Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(48): 19702-19712, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982799

RESUMEN

The production of fossil fuels, including oil, gas, and coal, retains a dominant share in US energy production and serves as a major anthropogenic source of methane, a greenhouse gas with a high warming potential. In addition to directly emitting methane into the air, fossil fuel production can release methane into groundwater, and that methane may eventually reach the atmosphere. In this study, we collected 311 water samples from an unconventional oil and gas (UOG) production region in Pennsylvania and an oil and gas (O&G) and coal production region across Ohio and West Virginia. Methane concentration was negatively correlated to distance to the nearest O&G well in the second region, but such a correlation was shown to be driven by topography as a confounding variable. Furthermore, sulfate concentration was negatively correlated with methane concentration and with distance to coal mining in the second region, and these correlations were robust even when considering topography. We hypothesized that coal mining enriched sulfate in groundwater, which in turn inhibited methanogenesis and enhanced microbial methane oxidation. Thus, this study highlights the complex interplay of multiple factors in shaping groundwater methane concentrations, including biogeochemical conversion, topography, and conventional fossil extraction.


Asunto(s)
Combustibles Fósiles , Agua Subterránea , Yacimiento de Petróleo y Gas , Metano , Región de los Apalaches , Carbón Mineral , Sulfatos
2.
Environ Sci Technol ; 56(2): 1091-1103, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34982938

RESUMEN

Health studies report associations between metrics of residential proximity to unconventional oil and gas (UOG) development and adverse health endpoints. We investigated whether exposure through household groundwater is captured by existing metrics and a newly developed metric incorporating groundwater flow paths. We compared metrics with detection frequencies/concentrations of 64 organic and inorganic UOG-related chemicals/groups in residential groundwater from 255 homes (Pennsylvania n = 94 and Ohio n = 161). Twenty-seven chemicals were detected in ≥20% of water samples at concentrations generally below U.S. Environmental Protection Agency standards. In Pennsylvania, two organic chemicals/groups had reduced odds of detection with increasing distance to the nearest well: 1,2-dichloroethene and benzene (Odds Ratio [OR]: 0.46, 95% confidence interval [CI]: 0.23-0.93) and m- and p-xylene (OR: 0.28, 95% CI: 0.10-0.80); results were consistent across metrics. In Ohio, the odds of detecting toluene increased with increasing distance to the nearest well (OR: 1.48, 95% CI: 1.12-1.95), also consistent across metrics. Correlations between inorganic chemicals and metrics were limited (all |ρ| ≤ 0.28). Limited associations between metrics and chemicals may indicate that UOG-related water contamination occurs rarely/episodically, more complex metrics may be needed to capture drinking water exposure, and/or spatial metrics in health studies may better reflect exposure to other stressors.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua , Región de los Apalaches , Monitoreo del Ambiente/métodos , Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua/análisis
3.
Environ Sci Process Impacts ; 24(2): 252-264, 2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35018906

RESUMEN

Horizontal drilling with hydraulic fracturing (HDHF) relies on the use of anthropogenic organic chemicals in proximity to residential areas, raising concern for groundwater contamination. Here, we extensively characterized organic contaminants in 94 domestic groundwater sites in Northeastern Pennsylvania after ten years of activity in the region. All analyzed volatile and semi-volatile compounds were below recommended United States Environmental Protection Agency maximum contaminant levels, and integrated concentrations across two volatility ranges, gasoline range organic compounds (GRO) and diesel range organic compounds (DRO), were low (0.13 ± 0.06 to 2.2 ± 0.7 ppb and 5.2-101.6 ppb, respectively). Following dozens of correlation analyses with distance-to-well metrics and inter-chemical indicator correlations, no statistically significant correlations were found except: (1) GRO levels were higher within 2 km of violations and (2) correlation between DRO and a few inorganic species (e.g., Ba and Sr) and methane. The correlation of DRO with inorganic species suggests a potential high salinity source, whereas elevated GRO may result from nearby safety violations. Highest-concentration DRO samples contained bis-2-ethylhexyl phthalate and N,N-dimethyltetradecylamine. Nevertheless, the overall low rate of contamination for the analytes could be explained by a spatially-resolved hydrogeologic model, where estimated transport distances from gas wells over the relevant timeframes were short relative to the distance to the nearest groundwater wells. Together, the observations and modeled results suggest a low probability of systematic groundwater organic contamination in the region.


Asunto(s)
Agua Subterránea , Fracking Hidráulico , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Agua Subterránea/química , Metano/análisis , Yacimiento de Petróleo y Gas , Pennsylvania , Estados Unidos , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Technol ; 55(24): 16413-16422, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34874708

RESUMEN

Conflicting evidence exists as to whether or not unconventional oil and gas (UOG) development has enhanced methane transport into groundwater aquifers over the past 15 years. In this study, recent groundwater samples were collected from 90 domestic wells and 4 springs in Northeastern Pennsylvania located above the Marcellus Shale after more than a decade of UOG development. No statistically significant correlations were observed between the groundwater methane level and various UOG geospatial metrics, including proximity to UOG wells and well violations, as well as the number of UOG wells and violations within particular radii. The δ13C and methane-to-higher chain hydrocarbon signatures suggested that the elevated methane levels were not attributable to UOG development nor could they be explained by using simple biogenic-thermogenic end-member mixing models. Instead, groundwater methane levels were significantly correlated with geochemical water type and topographical location. Comparing a subset of contemporary methane measurements to their co-located pre-drilling records (n = 64 at 49 distinct locations) did not indicate systematic increases in methane concentration but did reveal several cases of elevated concentration (n = 12) across a spectrum of topographies. Multiple lines of evidence suggested that the high-concentration groundwater methane could have originated from shallow thermogenic methane that migrated upward into groundwater aquifers with Appalachian Basin brine.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Metano/análisis , Gas Natural , Yacimiento de Petróleo y Gas , Pennsylvania , Contaminantes Químicos del Agua/análisis
6.
Nanomicro Lett ; 9(2): 14, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-30460311

RESUMEN

ABSTRACT: We report the development of a novel visible response BiVO4/TiO2(N2) nanotubes photoanode for photoelectrocatalytic applications. The nitrogen-treated TiO2 nanotube shows a high carrier concentration rate, thus resulting in a high efficient charge transportation and low electron-hole recombination in the TiO2-BiVO4. Therefore, the BiVO4/TiO2(N2) NTs photoanode enabled with a significantly enhanced photocurrent of 2.73 mA cm-2 (at 1 V vs. Ag/AgCl) and a degradation efficiency in the oxidation of dyes under visible light. Field emission scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometer, and UV-Vis absorption spectrum were conducted to characterize the photoanode and demonstrated the presence of both metal oxides as a junction composite. GRAPHICAL ABSTRACT: Visible-light response BiVO4/TiO2(N2) naontubes photoelectrode was fabricated for photoelectrochemical water splitting and organic degradation in this paper.

7.
J Hazard Mater ; 311: 51-62, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26954476

RESUMEN

In this paper, a novel dual heterojunction Photocatalytic Fuel Cell (PFC) system based on BiVO4/TiO2 nanotubes/FTO photoanode and ZnO/CuO nanowires/FTO photocathode has been designed. Compared with the electrodes in PFCs reported in earlier literatures, the proposed heterojunction not only enhances the visible light absorption but also offers a higher photoconversion efficiency. In addition, the nanostructured heterojunction owns a large surface area that ensures a large amount of active sites for organics degradation. The performance of the PFC base on the dual photoelectrodes was also studied herein. The results indicated that the PFC in ths paper exhibits a superior performance and its JV(max) reached 0.116 mw cm(-2), which is higher than that in most of reported PFCs with a Pt-free photocathode. When hazardous organic compounds such as methyl orange, Congo red and methylene blue were decomposed, the degradation rates obtained is to be 76%, 83%, and 90% respectively after 80 mins reaction. The proposed heterojunction photoelectrodes provided great potential for cost-effective and high-efficiency organic pollutants degradation and electricity generation in a PFC system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...