Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.060
Filtrar
1.
Front Pharmacol ; 15: 1390294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720773

RESUMEN

Introduction: Ganoderma lucidum (G. lucidum, Lingzhi) has long been listed as a premium tonic that can be used to improve restlessness, insomnia, and forgetfulness. We previously reported that a rat model of sporadic Alzheimer's disease (sAD) that was induced by an intracerebroventricular injection of streptozotocin (ICV-STZ) showed significant learning and cognitive deficits and sleep disturbances. Treatment with a G. lucidum spore extract with the sporoderm removed (RGLS) prevented learning and memory impairments in sAD model rats. Method: The present study was conducted to further elucidate the preventive action of RGLS on sleep disturbances in sAD rats by EEG analysis, immunofluorescence staining, HPLC-MS/MS and Western blot. Results: Treatment with 720 mg/kg RGLS for 14 days significantly improved the reduction of total sleep time, rapid eye movement (REM) sleep time, and non-REM sleep time in sAD rats. The novelty recognition experiment further confirmed that RGLS prevented cognitive impairments in sAD rats. We also found that RGLS inhibited the nuclear factor-κB (NF-κB)/Nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammatory pathway in the medial prefrontal cortex (mPFC) in sAD rats and ameliorated the lower activity of γ-aminobutyric acid (GABA)-ergic neurons in the parabrachial nucleus (PBN). Discussion: These results suggest that inhibiting the neuroinflammatory response in the mPFC may be a mechanism by which RGLS improves cognitive impairment. Additionally, improvements in PBN-GABAergic activity and the suppression of neuroinflammation in the mPFC in sAD rats might be a critical pathway to explain the preventive effects of RGLS on sleep disturbances in sAD.

2.
Front Pharmacol ; 15: 1406127, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38720779

RESUMEN

Introduction: Ganoderma lucidum: (G. lucidum, Lingzhi) is a medicinal and edible homologous traditional Chinese medicine that is used to treat various diseases, including Alzheimer's disease and mood disorders. We previously reported that the sporoderm-removed G. lucidum spore extract (RGLS) prevented learning and memory impairments in a rat model of sporadic Alzheimer's disease (sAD), but the effect of RGLS on depression-like behaviors in this model and its underlying molecular mechanisms of action remain unclear. Method: The present study investigated protective effects of RGLS against intracerebroventricular streptozotocin (ICV-STZ)-induced depression in a rat model of sAD and its underlying mechanism. Effects of RGLS on depression- and anxiety-like behaviors in ICV-STZ rats were assessed in the forced swim test, sucrose preference test, novelty-suppressed feeding test, and open field test. Results: Behavioral tests demonstrated that RGLS (360 and 720 mg/kg) significantly ameliorated ICV-STZ-induced depression- and anxiety-like behaviors. Immunofluorescence, Western blot and enzyme-linked immunosorbent assay results further demonstrated that ICV-STZ rats exhibited microglia activation and neuroinflammatory response in the medial prefrontal cortex (mPFC), and RGLS treatment reversed these changes, reflected by the normalization of morphological changes in microglia and the expression of NF-κB, NLRP3, ASC, caspase-1 and proinflammatory cytokines. Golgi staining revealed that treatment with RGLS increased the density of mushroom spines in neurons. This increase was associated with elevated expression of brain-derived neurotrophic protein in the mPFC. Discussion: In a rat model of ICV-STZ-induced sAD, RGLS exhibits antidepressant-like effects, the mechanism of which may be related to suppression of the inflammatory response modulated by the NF-κB/NLRP3 pathway and enhancement of synaptic plasticity in the mPFC.

3.
Cell Biosci ; 14(1): 58, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720328

RESUMEN

The cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase-stimulator of interferon genes (cGAS-STING) signaling pathway, an important component of the innate immune system, is involved in the development of several diseases. Ectopic DNA-induced inflammatory responses are involved in several pathological processes. Repeated damage to tissues and metabolic organelles releases a large number of damage-associated molecular patterns (mitochondrial DNA, nuclear DNA, and exogenous DNA). The DNA fragments released into the cytoplasm are sensed by the sensor cGAS to initiate immune responses through the bridging protein STING. Many recent studies have revealed a regulatory role of the cGAS-STING signaling pathway in cardiovascular diseases (CVDs) such as myocardial infarction, heart failure, atherosclerosis, and aortic dissection/aneurysm. Furthermore, increasing evidence suggests that inhibiting the cGAS-STING signaling pathway can significantly inhibit myocardial hypertrophy and inflammatory cell infiltration. Therefore, this review is intended to identify risk factors for activating the cGAS-STING pathway to reduce risks and to simultaneously further elucidate the biological function of this pathway in the cardiovascular field, as well as its potential as a therapeutic target.

4.
Nat Comput Sci ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730185

RESUMEN

Single-cell epigenomic data has been growing continuously at an unprecedented pace, but their characteristics such as high dimensionality and sparsity pose substantial challenges to downstream analysis. Although deep learning models-especially variational autoencoders-have been widely used to capture low-dimensional feature embeddings, the prevalent Gaussian assumption somewhat disagrees with real data, and these models tend to struggle to incorporate reference information from abundant cell atlases. Here we propose CASTLE, a deep generative model based on the vector-quantized variational autoencoder framework to extract discrete latent embeddings that interpretably characterize single-cell chromatin accessibility sequencing data. We validate the performance and robustness of CASTLE for accurate cell-type identification and reasonable visualization compared with state-of-the-art methods. We demonstrate the advantages of CASTLE for effective incorporation of existing massive reference datasets in a weakly supervised or supervised manner. We further demonstrate CASTLE's capacity for intuitively distilling cell-type-specific feature spectra that unveil cell heterogeneity and biological implications quantitatively.

5.
J Chem Theory Comput ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718258

RESUMEN

Phosphate derivatives and their interaction with metal cations are involved in many important biological phenomena, so an accurate characterization of the phosphate-metal interaction is necessary to properly understand the role of phosphate-metal contacts in mediating biological function. Herein, we improved the standard 12-6 Lennard-Jones (LJ) potential via the usage of the 12-6-4 LJ model, which incorporates ion-induced dipole interactions. Via parameter scanning, we fine-tuned the 12-6-4 LJ polarizability values to obtain accurate absolute binding free energies for the phosphate anions H2PO4-, HPO42-, PO43- coordinating with Ca2+ and Mg2+. First, we modified the phosphate 12-6-4 LJ parameters to reproduce the solvation free energies of the series of phosphate anions using the thermodynamic integration (TI) method. Then, using the potential mean force (PMF) method, the polarizability of the metal-phosphate interaction was obtained. We show that the free energy profiles of phosphate ions coordinated to Ca2+ and Mg2+ generally show similar trends at longer metal-phosphate distances, while the absolute binding energy values increased with deprotonation. The resulting parameters demonstrate the flexibility of the 12-6-4 LJ-type nonbonded model and its usefulness in accurately describing cation-anion interactions.

6.
Vaccine ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38734496

RESUMEN

BACKGROUND: Universal varicella vaccination has been introduced in many countries, but there are a number of important differences in their vaccination strategies. It is essential to establish a vaccination program that can maximize the benefits of varicella vaccine, but there is a lack of comprehensive research on the effectiveness of varicella vaccine in different vaccination status. METHODS: Using data from population-based surveillance platforms we conducted a 1:2 matched case-control study. The cases were clinically diagnosed varicella with onset from 2017 to 2021, 1-14 years old in Chaoyang District, Beijing. The controls were matched according to date of birth (±1 month), sex and residence. The vaccination data of the subjects were obtained from the Childhood Immunization Information Management System in Beijing. Using conditional logistic regression models with or without interaction terms, we evaluated the effectiveness of varicella vaccine in different vaccination status. RESULTS: A total of 2528 cases and 5056 controls were enrolled. This study found that whether the time since last vaccination was adjusted had a substantial effect on the comparing vaccine effectiveness (VE) between subgroups. After adjustment for the time since last vaccination, 1) the incremental VE of 2-dose was 49.6 % (95 % Confidence Interval [CI], 38.8-58.6) compared with 1-dose (93.9 % vs. 88.0 %); 2) Among children who received one dose, the risk of chickenpox in children vaccinated at 18-23 months was 1.382 (95 %CI, 1.084-1.762) times that in children vaccinated at 12-17 months. 3) the VE with less than one, two, and three year intervals is higher than that with six-year-intervals (P < 0.05), respectively. CONCLUSIONS: When comparing VE between subgroups of different vaccination status, the time since last vaccination should be adjusted. The first dose of varicella vaccine should be given as early as the second year of life, and the second dose can improve vaccine effectiveness.

7.
Sensors (Basel) ; 24(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38733052

RESUMEN

Motion capture technology plays a crucial role in optimizing athletes' skills, techniques, and strategies by providing detailed feedback on motion data. This article presents a comprehensive survey aimed at guiding researchers in selecting the most suitable motion capture technology for sports science investigations. By comparing and analyzing the characters and applications of different motion capture technologies in sports scenarios, it is observed that cinematography motion capture technology remains the gold standard in biomechanical analysis and continues to dominate sports research applications. Wearable sensor-based motion capture technology has gained significant traction in specialized areas such as winter sports, owing to its reliable system performance. Computer vision-based motion capture technology has made significant advancements in recognition accuracy and system reliability, enabling its application in various sports scenarios, from single-person technique analysis to multi-person tactical analysis. Moreover, the emerging field of multimodal motion capture technology, which harmonizes data from various sources with the integration of artificial intelligence, has proven to be a robust research method for complex scenarios. A comprehensive review of the literature from the past 10 years underscores the increasing significance of motion capture technology in sports, with a notable shift from laboratory research to practical training applications on sports fields. Future developments in this field should prioritize research and technological advancements that cater to practical sports scenarios, addressing challenges such as occlusion, outdoor capture, and real-time feedback.


Asunto(s)
Deportes , Dispositivos Electrónicos Vestibles , Humanos , Deportes/fisiología , Fenómenos Biomecánicos , Encuestas y Cuestionarios , Movimiento (Física) , Inteligencia Artificial , Movimiento/fisiología , Captura de Movimiento
8.
Nat Neurosci ; 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741020

RESUMEN

The subcommissural organ (SCO) is a gland located at the entrance of the aqueduct of Sylvius in the brain. It exists in species as distantly related as amphioxus and humans, but its function is largely unknown. Here, to explore its function, we compared transcriptomes of SCO and non-SCO brain regions and found three genes, Sspo, Car3 and Spdef, that are highly expressed in the SCO. Mouse strains expressing Cre recombinase from endogenous promoter/enhancer elements of these genes were used to genetically ablate SCO cells during embryonic development, resulting in severe hydrocephalus and defects in neuronal migration and development of neuronal axons and dendrites. Unbiased peptidomic analysis revealed enrichment of three SCO-derived peptides, namely, thymosin beta 4, thymosin beta 10 and NP24, and their reintroduction into SCO-ablated brain ventricles substantially rescued developmental defects. Together, these data identify a critical role for the SCO in brain development.

9.
ACS Nano ; 18(19): 12235-12260, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38696217

RESUMEN

Variants of coronavirus porcine epidemic diarrhea virus (PEDV) frequently emerge, causing an incomplete match between the vaccine and variant strains, which affects vaccine efficacy. Designing vaccines with rapidly replaceable antigens and high efficacy is a promising strategy for the prevention of infection with PEDV variant strains. In our study, three different types of self-assembled nanoparticles (nps) targeting receptor-binding N-terminal domain (NTD) and C-terminal domain (CTD) of S1 protein, named NTDnps, CTDnps, and NTD/CTDnps, were constructed and evaluated as vaccine candidates against PEDV. NTDnps and CTDnps vaccines mediated significantly higher neutralizing antibody (NAb) titers than NTD and CTD recombinant proteins in mice. The NTD/CTDnps in varying ratios elicited significantly higher NAb titers when compared with NTDnps and CTDnps alone. The NTD/CTDnps (3:1) elicited NAb with titers up to 92.92% of those induced by the commercial vaccine. Piglets immunized with NTD/CTDnps (3:1) achieved a passive immune protection rate of 83.33% of that induced by the commercial vaccine. NTD/CTDnps (3:1) enhanced the capacity of mononuclear macrophages and dendritic cells to take up and present antigens by activating major histocompatibility complex I and II molecules to stimulate humoral and cellular immunity. These data reveal that a combination of S1-NTD and S1-CTD antigens targeting double receptor-binding domains strengthens the protective immunity of nanoparticle vaccines against PEDV. Our findings will provide a promising vaccine candidate against PEDV.


Asunto(s)
Nanopartículas , Virus de la Diarrea Epidémica Porcina , Vacunas Virales , Virus de la Diarrea Epidémica Porcina/inmunología , Animales , Nanopartículas/química , Porcinos , Ratones , Vacunas Virales/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/inmunología , Ratones Endogámicos BALB C , Antígenos Virales/inmunología , Antígenos Virales/química , Anticuerpos Neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Dominios Proteicos/inmunología , Femenino , Nanovacunas
10.
Mol Ther Nucleic Acids ; 35(2): 102187, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38706631

RESUMEN

Long non-coding RNAs (lncRNAs) are important factors involved in biological regulatory networks. Accurately predicting lncRNA-protein interactions (LPIs) is vital for clarifying lncRNA's functions and pathogenic mechanisms. Existing deep learning models have yet to yield satisfactory results in LPI prediction. Recently, graph autoencoders (GAEs) have seen rapid development, excelling in tasks like link prediction and node classification. We employed GAE technology for LPI prediction, devising the FMSRT-LPI model based on path masking and degree regression strategies and thereby achieving satisfactory outcomes. This represents the first known integration of path masking and degree regression strategies into the GAE framework for potential LPI inference. The effectiveness of our FMSRT-LPI model primarily relies on four key aspects. First, within the GAE framework, our model integrates multi-source relationships of lncRNAs and proteins with LPN's topological data. Second, the implemented masking strategy efficiently identifies LPN's key paths, reconstructs the network, and reduces the impact of redundant or incorrect data. Third, the integrated degree decoder balances degree and structural information, enhancing node representation. Fourth, the PolyLoss function we introduced is more appropriate for LPI prediction tasks. The results on multiple public datasets further demonstrate our model's potential in LPI prediction.

11.
J Hazard Mater ; 472: 134476, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38691996

RESUMEN

1,2-Dichloroethane (1,2-DCA), a widely utilized chemical intermediate and organic solvent in industry, frequently enters the environment due to accidental leaks and mishandling during application processes. Thus, the in-situ remediation of contaminated sites has become increasingly urgent. However, traditional remediation methods are inefficient and costly, while bioremediation presents a green, efficient, and non-secondary polluting alternative. In this study, an engineered strain capable of completely degrading 1,2-DCA was constructed. We introduced six exogenous genes of the 1,2-DCA degradation pathway into E. coli and confirmed their normal transcription and efficient expression in this engineered strain through qRT-PCR and proteomics. The degradation experiments showed that the strain completely degraded 2 mM 1,2-DCA within 12 h. Furthermore, the results of isotope tracing verified that the final degradation product, malic acid, entered the tricarboxylic acid cycle (TCA) of E. coli and was ultimately fully metabolized. Also, morphological changes in the engineered strain and control strain exposed to 1,2-DCA were observed under SEM, and the results revealed that the engineered strain is more tolerant to 1,2-DCA than the control strain. In conclusion, this study paved a new way for humanity to deal with the increasingly complex environmental challenges.

12.
Mol Ecol Resour ; : e13966, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695851

RESUMEN

Parasitic plants have a heterotrophic lifestyle, in which they withdraw all or part of their nutrients from their host through the haustorium. Despite the release of many draft genomes of parasitic plants, the genome evolution related to the parasitism feature of facultative parasites remains largely unknown. In this study, we present a high-quality chromosomal-level genome assembly for the facultative parasite Pedicularis kansuensis (Orobanchaceae), which invades both legume and grass host species in degraded grasslands on the Qinghai-Tibet Plateau. This species has the largest genome size compared with other parasitic species, and expansions of long terminal repeat retrotransposons accounting for 62.37% of the assembly greatly contributed to the genome size expansion of this species. A total of 42,782 genes were annotated, and the patterns of gene loss in P. kansuensis differed from other parasitic species. We also found many mobile mRNAs between P. kansuensis and one of its host species, but these mobile mRNAs could not compensate for the functional losses of missing genes in P. kansuensis. In addition, we identified nine horizontal gene transfer (HGT) events from rosids and monocots, as well as one single-gene duplication events from HGT genes, which differ distinctly from that of other parasitic species. Furthermore, we found evidence for HGT through transferring genomic fragments from phylogenetically remote host species. Taken together, these findings provide genomic insights into the evolution of facultative parasites and broaden our understanding of the diversified genome evolution in parasitic plants and the molecular mechanisms of plant parasitism.

14.
Infect Agent Cancer ; 19(1): 21, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693556

RESUMEN

AIMS: This study compared the prevalences of metabolic syndrome and of cardiac or kidney comorbidities among patients with hepatocellular carcinoma (HCC) associated with metabolic dysfunction-related fatty liver disease (MAFLD), chronic infection with hepatitis B or C virus (HBV or HCV), or the combination of MAFLD and chronic HBV infection. METHODS: Medical records were retrospectively analyzed for patients with HCC who underwent hepatectomy between March 2013 and March 2023. Patients with HCC of different etiologies were compared in terms of their clinicodemographic characteristics and laboratory data before surgery. RESULTS: Of the 2422 patients, 1,822 (75.2%) were chronically infected with HBV without MAFLD and HCV, 415 (17.2%) had concurrent MAFLD and chronic HBV infection but no HCV infection, 121 (5.0%) had MAFLD without hepatitis virus infection, and 64 (2.6%) were chronically infected with HCV in the presence or absence of MAFLD and HBV infection. Compared to patients chronically infected with HBV without MAFLD and HCV, those with MAFLD but no hepatitis virus infection showed significantly lower prevalence of cirrhosis, ascites, portal hypertension, alpha-fetoprotein concentration ≥ 400 ng/mL, tumor size > 5 cm, multinodular tumors and microvascular invasion. Conversely, they showed significantly higher prevalence of metabolic syndrome, hypertension, type 2 diabetes, abdominal obesity, history of cardiovascular disease, T-wave alterations, hypertriglyceridemia and hyperuricemia, as well as higher risk of arteriosclerotic cardiovascular disease. Compared to patients with MAFLD but no hepatitis virus infection, those with concurrent MAFLD and chronic infection with HBV showed significantly higher prevalence of cirrhosis, ascites and portal hypertension, but significantly lower prevalence of hypertension and history of cardiovascular disease. Compared to patients with other etiologies, those chronically infected with HCV in the presence or absence of MAFLD and HBV infection, showed significantly higher prevalence of cirrhosis, portal hypertension, ascites, and esophagogastric varices. CONCLUSION: Patients with HCC associated with MAFLD tend to have a background of less severe liver disease than those with HCC of other etiologies, but they may be more likely to suffer metabolic syndrome or comorbidities affecting the heart or kidneys.

15.
Bioact Mater ; 37: 517-532, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38698916

RESUMEN

The cardiotoxicity caused by Dox chemotherapy represents a significant limitation to its clinical application and is a major cause of late death in patients undergoing chemotherapy. Currently, there are no effective treatments available. Our analysis of 295 clinical samples from 132 chemotherapy patients and 163 individuals undergoing physical examination revealed a strong positive correlation between intestinal barrier injury and the development of cardiotoxicity in chemotherapy patients. We developed a novel orally available and intestinal targeting protein nanodrug by assembling membrane protein Amuc_1100 (obtained from intestinal bacteria Akkermansia muciniphila), fluorinated polyetherimide, and hyaluronic acid. The protein nanodrug demonstrated favorable stability against hydrolysis compared with free Amuc_1100. The in vivo results demonstrated that the protein nanodrug can alleviate Dox-induced cardiac toxicity by improving gut microbiota, increasing the proportion of short-chain fatty acid-producing bacteria from the Lachnospiraceae family, and further enhancing the levels of butyrate and pentanoic acids, ultimately regulating the homeostasis repair of lymphocytes in the spleen and heart. Therefore, we believe that the integrity of the intestinal barrier plays an important role in the development of chemotherapy-induced cardiotoxicity. Protective interventions targeting the intestinal barrier may hold promise as a general clinical treatment regimen for reducing Dox-induced cardiotoxicity.

16.
Adv Healthc Mater ; : e2400760, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703026

RESUMEN

Near-infrared-II (NIR-II) fluorescence imaging is pivotal in biomedical research. Organic probes exhibit high potential in clinical translation, due to advantages such as precise structure design, low toxicity, and post-modifications convenience. In related preparation, enhancement of NIR-II tail emission from NIR-I dyes is an efficient method. In particular, the promotion of twisted intramolecular charge transfer (TICT) of relevant NIR-I dyes is a convenient protocol. However, present TICT-type probes still show disadvantages in relatively low emission, large particle sizes, or limited choice of NIR-I dyes, etc. Herein, the synthesis of stable small-sized polymer NIR-II fluoroprobes (e.g., 7.2 nm), integrating TICT and Förster resonance energy transfer process to synergistically enhance the NIR-II emission is reported. Strong enhanced emissions can be obtained from various NIR-I dyes and lanthanide elements (e.g., twelvefold at 1250 nm from Nd-DTPA/IR-808 sample). The fluorophore provides high-resolution angiography, with high-contrast imaging on middle cerebral artery occlusion model mice for distinguishing occlusion. The fluorophore can be rapidly excreted from the kidney (urine ≈65% within 4 h) in normal mice and exhibits long-term renal retention on acute kidney injury mice, showing potential applications in the prognosis of kidney diseases. This development provides an effective strategy to design and synthesize effective NIR-II fluoroprobes.

17.
Clinics (Sao Paulo) ; 79: 100374, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38718696

RESUMEN

OBJECTIVE: The aim of the study was to create two consensus nomograms for predicting Overall Survival (OS) and Cancer-Specific Survival (CSS) in adults with papillary Renal Cell Carcinoma (pRCC). METHODS: Using the Surveillance, Epidemiology, and End Results databases, a retrospective analysis of 1,074 adults with pRCC from 2004 to 2015 was performed. These patients were then randomly divided into two independent cohorts with a ratio of 7:3 (training cohort: 752; validation cohort: 322). In a retrospective analysis of 752 patients from the training cohort, independent prognostic variables affecting OS and CSS were found. R software was used to create prognostic nomograms based on the findings of Cox regression analysis. The performance of the nomograms was assessed using the Concordance Index (C-index), the Area Under Curve (AUC), a calibration curve, and Decision Curve Analysis (DCA). Data from the 107 postoperative pRCC patients at the Affiliated Hospital of Xuzhou Medical University were used for external validation of the nomogram. RESULTS: For OS and CSS, the C-indices and AUCs of the training cohort and the validation cohort indicated that the model had excellent discrimination. The DCA demonstrated that the model was clinically applicable, and the calibration curves in the internal and external validations showed that the model's accuracy was high. CONCLUSION: The authors developed and validated a prognostic nomogram that accurately predicted the 3-, 5-, and 8-year OS and CSS of adults with pRCC. Clinicians can use this knowledge to direct the clinical management and counseling of patients with pRCC.

18.
bioRxiv ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38766131

RESUMEN

Obesity is an epidemic with myriad health effects, but little is understood regarding individual obese phenotypes and how they may respond to therapy. Epigenetic changes associated with obesity have been detected in blood, liver, pancreas, and adipose tissues. Previous work found that dietary glucose hyperabsorption occurs in some obese subjects, but detailed transcriptional or epigenomic features of the intestine associated with this phenotype are unknown. This study evaluated differentially expressed genes and relative chromatin accessibility in intestinal organoids established from donors classified as lean, obese, or obese hyperabsorptive by body mass index and glucose transport assays. Transcriptomic analysis indicated that obese hyperabsorptive subjects have significantly upregulated dietary nutrient absorption proteins and downregulated type I interferon targets. Chromatin accessibility and transcription factor footprinting suggested that enhanced binding of HNF4G promotes the obese hyperabsorption phenotype. Quantitative PCR assessment in a larger subject cohort suggested that intestinal epithelial expression of CUBN, GIP, and SLC2A5 have high correlation with hyperabsorption. The obese hyperabsorption phenotype is characterized by transcriptional changes that support increased nutrient uptake and may be driven by differentially accessible chromatin. Recognizing unique intestinal phenotypes in obesity provides new perspective in considering therapeutic targets and options to manage the disease.

19.
Front Oncol ; 14: 1391546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38764577

RESUMEN

Objectives: The objective of this network meta-analysis is to systematically compare the efficacy of diverse progestin-based combination regimens in treating patients diagnosed with endometrial cancer or atypical endometrial hyperplasia. The primary goal is to discern the optimal combination treatment regimen through a comprehensive examination of their respective effectiveness. Methods: We systematically searched four prominent databases: PubMed, Web of Science, Embase, and Cochrane Central Register of Controlled Trials, for randomized controlled trials addressing the efficacy of progestins or progestin combinations in the treatment of patients with endometrial cancer or atypical endometrial hyperplasia. The search spanned from the inception of these databases to December 2023. Key outcome indicators encompassed survival indices, criteria for assessing efficacy, as well as pregnancy and relapse rate. This study was registered in PROSPERO (CRD42024496311). Results: From the 1,558 articles initially retrieved, we included 27 studies involving a total of 5,323 subjects in our analysis. The results of the network meta-analysis revealed that the mTOR inhibitor+megestrol acetate (MA)+tamoxifen regimen secured the top rank in maintaining stable disease (SD) (SUCRA=73.4%) and extending progression-free survival (PFS) (SUCRA=72.4%). Additionally, the progestin combined with tamoxifen regimen claimed the leading position in enhancing the partial response (PR) (SUCRA=75.2%) and prolonging overall survival (OS) (SUCRA=80%). The LNG-IUS-based dual progestin regimen emerged as the frontrunner in improving the complete response (CR) (SUCRA=98.7%), objective response rate (ORR) (SUCRA=99.1%), pregnancy rate (SUCRA=83.7%), and mitigating progression (SUCRA=8.0%) and relapse rate (SUCRA=47.4%). In terms of safety, The LNG-IUS-based dual progestin regimen had the lowest likelihood of adverse events (SUCRA=4.2%), while the mTOR inhibitor regimen (SUCRA=89.2%) and mTOR inbitor+MA+tamoxifen regimen (SUCRA=88.4%) had the highest likelihood of adverse events. Conclusions: Patients diagnosed with endometrial cancer or atypical endometrial hyperplasia exhibited the most favorable prognosis when undergoing progestin combination therapy that included tamoxifen, mTOR inhibitor, or LNG-IUS. Notably, among these options, the LNG-IUS-based dual progestin regimen emerged as particularly promising for potential application. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO, identifier CRD42024496311.

20.
Hypertens Res ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38769138

RESUMEN

Obesity-related hypertension (OH) is accompanied by obvious endothelial dysfunction, which contributes to increased peripheral vascular resistance and hypertension. Adrenomedullin (ADM), a multifunctional active peptide, is elevated in obese humans. The OH rats induced by high fat diet (HFD) for 28 weeks and the human umbilical vein endothelial cells (HUVECs)-treated by palmitic acid (PA) were used to investigate the effects of ADM on endothelial dysfunction and the underlying mechanisms. Vascular reactivity was assessed using mesenteric arteriole rings, and the protein expression levels were examined by Western blot analysis. Compared with the control rats, OH rats exhibited hypertension and endothelial dysfunction, along with reduced eNOS protein expression and Akt activation, and increased protein expression of proinflammatory cytokines and ROS levels. Four-week ADM administration improved hypertension and endothelial function, increased eNOS protein expression and Akt activation, and attenuated endothelial inflammation and oxidative stress in OH rats. In vitro experiment, the antagonism of ADM receptors with ADM22-52 and the suppression of Akt signaling with A6730 significantly blocked ADM-caused increase of NO content and activation of eNOS and Akt, and inhibited the anti-inflammatory and anti-oxidant effect of ADM in PA-stimulated HUVECs. These data indicate that endothelial dysfunction in OH rats is partially attributable to the decreased NO level, and the increased inflammation and oxidative stress. ADM improves endothelial function and exerts hypotensive effect depending on the increase of NO, and its anti-inflammatory and anti-oxidant effect via receptor-Akt pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...