Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Inorg Chem ; 63(28): 12703-12707, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38949122

RESUMEN

In recent years, halide perovskites have attracted considerable attention for photocatalytic CO2 reduction. However, the presence of surface defects and the lack of specific catalytic sites for CO2 reduction lead to low photocatalytic performance. In this study, we demonstrate a facile method that post-treats CsPbBr3 with ZnBr2 for photocatalytic CO2 reduction. Our experimental and characterization results show that ZnBr2 has a dual role: the Br- ions in ZnBr2 passivate Br vacancies (VBr) on the CsPbBr3 surface, while Zn2+ cations act as catalytic sites for CO2 reduction. The ZnBr2-CsPbBr3 achieves a photocatalytic CO evolution rate of 57 µmol g-1 h-1, which is nearly three times higher than that of the pristine CsPbBr3. The enhanced performance over ZnBr2-CsPbBr3 is mainly due to the decreased VBr and lower reaction energy barrier for CO2 reduction. This work presents an effective method to simultaneously passivate surface defects and introduce catalytic sites, providing useful guidance for the regulation of perovskite photoelectric properties and the design of efficient photocatalysts.

2.
Nanoscale ; 16(27): 12909-12917, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38904324

RESUMEN

Structural features like 3D nano-size, ultrathin thickness and amorphous/crystalline interfaces play crucial roles in regulating charge separation and active sites of photocatalysts. However, their co-occurrence in a single catalyst and exploitation in photocatalytic CO2 reduction (PCR) remains challenging. Herein, nano-sized bismuth oxychloride spheres (BiOCl-NS) confining three-layered nanoplates (∼2.2 nm ultrathin) and an amorphous/crystalline interface are exclusively developed via intrinsic engineering for an enhanced sacrificial-reagent-free PCR system. The results uncover a unique synergism wherein the three-layered nanoplates accelerate electron-hole separation, and the amorphous/crystalline interface exposes electron-localized active sites (Bi-Ovac-Bi). Consequently, BiOCl-NS exhibit efficient CO2 adsorption and activation with the lowering of rate-determining-step energy barriers, leading to remarkable CO production (102.72 µmol g-1 h-1) with high selectivity (>99%), stability (>30 h), and apparent quantum efficiency (0.51%), outperforming conventional counterparts. Our work provides a facile structural engineering approach for boosting PCR and offers distinct synergism for advancing diverse materials.

3.
Adv Colloid Interface Sci ; 329: 103185, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38772148

RESUMEN

The unremitting pursuit of high-performance and multifunctional materials has consistently propelled modern industries forward, stimulating research and motivating progress in related fields. In such materials, polybenzoxazine (PBz) aerogel, which combines the virtues of PBz and aerogel, has attracted salient attention recently, emerging as a novel research focus in the realm of advanced materials. In this review, the preparation scheme, microscopic morphology, and fundamental characteristics of PBz aerogels are comprehensively summarized and discussed in anticipation of providing a clear understanding of the correlation between preparation process, structure, and properties. The effective strategies for enhancing the performance of PBz aerogels including composite fabrication and hybridization are highlighted. Moreover, the applications of PBz-based aerogels in various domains such as adsorption (including wastewater treatment, CO2 capture, and microwave adsorption), thermal insulation, energy storage as well as sensors are covered in detail. Furthermore, several obstacles and potential directions for subsequent research are delineated with a view to surmounting the prevailing constraints and achieving a realization of the shift from experimental exploration to practical applications.

4.
Angew Chem Int Ed Engl ; : e202407748, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38818639

RESUMEN

Selective producing ethanol from CO2 electroreduction is highly demanded, yet the competing ethylene generation route is commonly more thermodynamically preferred. Herein, we reported an efficient CO2-to-ethanol conversion (53.5 % faradaic efficiency at -0.75 V versus reversible hydrogen electrode (vs. RHE)) over an oxide-derived nanocubic catalyst featured with abundant "embossment-like" structured grain-boundaries. The catalyst also attains a 23.2 % energy efficiency to ethanol within a flow cell reactor. In situ spectroscopy and electrochemical analysis identified that these dualphase Cu(I) and Cu(0) sites stabilized by grain-boundaries are very robust over the operating potential window, which maintains a high concentration of co-adsorbed *CO and hydroxyl (*OH) species. Theoretical calculations revealed that the presence of *OHad not only promote the easier dimerization of *CO to form *OCCO (ΔG~0.20 eV) at low overpotentials but also preferentially favor the key *CHCOH intermediate hydrogenation to *CHCHOH (ethanol pathway) while suppressing its dehydration to *CCH (ethylene pathway), which is believed to determine the remarkable ethanol selectivity. Such imperative intermediates associated with the bifurcation pathway were directly distinguished by isotope labelling in situ infrared spectroscopy. Our work promotes the understanding of bifurcating mechanism of CO2ER-to-hydrocarbons more deeply, providing a feasible strategy for the design of efficient ethanol-targeted catalysts.

5.
Small ; : e2401202, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805739

RESUMEN

Halide perovskites have garnered significant attention for their unique optoelectronic properties in solar-to-fuel conversions. However, the efficiency of halide perovskites in the field of photocatalytic CO2 reduction is largely limited by serious charge recombination and a lack of efficient active sites. In this work, a rubidium (Rb) doped Cs2AgBiBr6 (Rb:CABB) hierarchical microsphere is developed for photocatalytic CO2 reduction. Experimental and theoretical analysis discloses that partially substituting Rb+ for Ag+ can effectively modulate the electronic structure of CABB, favoring charge separation and making adjacent Bi atoms an electron-rich active site. Further investigations indicated that Rb doping also reduces the energy barriers of the rate-determining step in CO2 reduction. As a result, Rb:CABB demonstrated an enhanced CO yield compared to its undoped counterpart. This work presents a promising approach to optimizing the electronic structures of photocatalysts and paving a new way for exploring halide perovskites for photocatalytic CO2 reduction.

6.
Small ; : e2400769, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38751231

RESUMEN

In the field of photocatalytic CO2 reduction, quantum dot (QD) assemblies have emerged as promising candidate photocatalysts due to their superior light absorption and better substrate adsorption. However, the poor contacts within QD assemblies lead to low interfacial charge transfer efficiency, making QD assemblies suffer from unsatisfactory photocatalytic performance. Herein, a novel approach is presented involving the construction of strongly interfacial fused CdS QD assemblies (CdS QD gel) for CO2 reduction. The novel CdS QD gel demonstrates outstanding photocatalytic performance for CO2 methanation, achieving a CH4 generation rate of ≈296 µmol g-1 h-1, with a selectivity surpassing 76% and an apparent quantum yield (AQY) of 1.4%. Further investigations reveal that the robust interfacial fusion in these CdS QDs not only boosts their ability to absorb visible light but also significantly promotes charge separation. The present work paves the way for utilizing QD gel photocatalysts in realizing efficient CO2 reduction and highlights the critical role of interfacial engineering in photocatalysts.

7.
Chemphyschem ; 25(14): e202400304, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622796

RESUMEN

In the field of photocatalysis, new heterojunction materials are increasingly explored to achieve efficient energy conversion and environmental catalysis under visible light and sunlight. This paper presents a study on two newly constructed two-dimensional van der Waals heterojunctions, Sc2CCl2/MoSe2 and Sc2CCl2/PtSe2, using density-functional theory. The study includes a systematic investigation of their geometrical structure, electronic properties, and optical properties. The results indicate that both heterojunctions are thermodynamically, kinetically, and mechanically stable. Additionally, Bader charge analysis reveals that both heterojunctions exhibit typical type II band properties. However, the band gap of the Sc2CCl2/MoSe2 heterojunction is only 1.18 eV, which is insufficient to completely cross the reduction and oxidation (REDOX) potential of 1.23 eV, whereas the band gap of Sc2CCl2/PtSe2 heterojunction is 1.49 eV, which is theoretically capable for water decomposition. The subsequent calculation of the Sc2CCl2/PtSe2 heterojunction demonstrate excellent hole carrier mobility and high efficiency light absorption in the visible light range, facilitating the separation of photogenerated electrons and holes. More importantly, Sc2CCl2/PtSe2 vdW type II heterojunction can achieve full water decomposition from pH 1 to pH 4, and its thermodynamic feasibility is confirmed by Gibbs free energy results. The aim of this study is to develop materials and analyses that will result in optoelectronic devices that are more efficient, stable, and sustainable.

8.
ACS Nano ; 18(14): 10054-10062, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38527458

RESUMEN

Perovskite nanocrystals (PNCs) bear a huge potential for widespread applications, such as color conversion, X-ray scintillators, and active laser media. However, the poor intrinsic stability and high susceptibility to environmental stimuli including moisture and oxygen have become bottlenecks of PNC materials for commercialization. Appropriate barrier material design can efficiently improve the stability of the PNCs. Particularly, the strategy for packaging PNCs in organosilicon matrixes can integrate the advantages of inorganic-oxide-based and polymer-based encapsulation routes. However, the inert long-carbon-chain ligands (e.g., oleic acid, oleylamine) used in the current ligand systems for silicon-based encapsulation are detrimental to the cross-linking of the organosilicon matrix, resulting in performance deficiencies in the nanocrystal films, such as low transparency and large surface roughness. Herein, we propose a dual-organosilicon ligand system consisting of (3-aminopropyl)triethoxysilane (APTES) and (3-aminopropyl)triethoxysilane with pentanedioic anhydride (APTES-PA), to replace the inert long-carbon-chain ligands for improving the performance of organosilicon-coated PNC films. As a result, strongly fluorescent PNC films prepared by a facile solution-casting method demonstrate high transparency and reduced surface roughness while maintaining high stability in various harsh environments. The optimized PNC films were eventually applied in an X-ray imaging system as scintillators, showing a high spatial resolution above 20 lp/mm. By designing this promising dual organosilicon ligand system for PNC films, our work highlights the crucial influence of the molecular structure of the capping ligands on the optical performance of the PNC film.

9.
Inorg Chem ; 63(4): 2234-2240, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38214981

RESUMEN

Converting CO2 into high-value-added chemicals has been recognized as a promising way to tackle the fossil fuel crisis. Quantum dots (QDs) have been extensively studied for photocatalytic CO2 reduction due to their excellent optoelectronic properties. However, most of the photogenerated charge carriers recombine before they participate in the photocatalytic reaction. It is crucial to regulate the charge carriers to minimize undesired charge recombination, thus, promoting surface photocatalysis. Herein, we report a copper-doped CdS (Cu:CdS) QD photocatalyst for CO2 reduction. Density functional theory simulations and experimental results demonstrate that Cu dopants create intermediate energy levels in CdS QDs that can extend the lifetime of exciton charge carriers. Furthermore, the long-lived charge carriers can be harnessed for the photocatalytic reaction on Cu:CdS QDs. The resultant Cu:CdS QDs exhibited a significantly enhanced photocatalytic activity toward CO2 reduction compared to the pristine CdS QDs. This work highlights the importance of charge regulation in photocatalysts and opens new pathways for the exploration of efficient QD photocatalysts.

10.
RSC Adv ; 14(4): 2704, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38229714

RESUMEN

[This corrects the article DOI: 10.1039/D2RA00797E.].

11.
RSC Adv ; 14(3): 1889, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38192321

RESUMEN

[This corrects the article DOI: 10.1039/D2RA03060H.].

12.
Small ; 20(1): e2304756, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37653605

RESUMEN

Halide perovskites exhibit outstanding optoelectronic properties, which make them an ideal choice for photocatalytic CO2 reduction and benzyl alcohol (BA) oxidation. Nevertheless, the simultaneous realization of the above redox coupling reactions on halide perovskites remains a great challenge, as it requires distinct catalytic sites for different target reactions. Herein, the catalytic sites of Cs2 AgBiCl6 (CABC) are regulated by doping Fe for efficient coupling of photocatalytic CO2 reduction and BA oxidation. The Fe-doped CABC (Fe: CABC) exhibits an enhanced visible-light response and effective charge separation. Experimental results and theoretical calculations reveal a synergistic interplay between Bi and Fe sites, where the Bi and Fe sites have lower activation energies toward CO2 reduction and BA oxidation. Further investigations demonstrate that electrons and holes prefer to accumulate at the Bi site and Fe site under light irradiation, respectively, which creates favorable conditions for facilitating CO2 reduction and BA oxidation. The resultant Fe: CABC achieves a high photocatalytic performance toward CO (18.5 µmol g-1  h-1 ) and BD (1.1 mmol g-1  h-1 ) generation, which surpasses most of the state-of-the-art halide photocatalysts. This work demonstrates a facile strategy for regulating the catalytic site for redox coupling reactions, which will pave a new way for designing halide perovskites for photocatalysis.

13.
RSC Adv ; 13(48): 33736-33742, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38020020

RESUMEN

A combined experimental and density functional theory (DFT) study on the UV-Vis spectra of o-methoxyaniline-terminated mono azo dyes was conducted. By applying time-dependent-DFT calculations, details of excitation processes were determined and visualization by hole-electron analysis was undertaken. Fragment-divided analysis revealed the contributions of different parts of the structures for the UV-Vis spectra, that richer/poorer electron density on aromatic rings lead to greater/less maximum absorption wavelengths (λmax) and larger/smaller half peak width (W1/2). Combining theoretical prediction with experimental verification, we answered the question of how the electronegativities of substituents affected the electron densities and how it affected the spectra. In addition, a linear model connecting the λmax and W1/2 to the chemical shifts obtained by NMR spectroscopy was constructed, which laid the foundation for construction of a spectral library.

14.
J Colloid Interface Sci ; 652(Pt A): 673-679, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37524620

RESUMEN

Fabricating a cost-effective yet highly active photocatalyst to reduce CO2 to CO and oxidize benzyl alcohol to benzaldehyde simultaneously, is challenging. Herein, we construct an S-scheme 0D/2D CsPbBr3/TiO2 heterostructure for bifunctional photocatalysis. An in-situ synthetic route is used, which enables the precise integration between CsPbBr3 nanocrystals and ultrathin TiO2 nanosheets exposed with (001) facets (termed as TiO2-001), resulting in a tightly coupled heterointerface and desirable band offsets. The as-prepared CsPbBr3/TiO2-001heterojunctions exhibit boosted charge carrier kinetics, particularly, quick carrier separation/transfer and efficient utilization. Experimental results and theoretical calculations validate the S-scheme route in CsPbBr3/TiO2-001, which allows the enrichment of strongly conserved electrons-holes at conduction and valence bands of CsPbBr3 and TiO2-001, respectively. Consequently, compared to its counterparts, an excellent bifunctional activity (with 24 h reusability) is realized over CsPbBr3/TiO2-001, where the production rate of CO and benzaldehyde reach up to 78.06 µmol g-1h-1 and 1.77 mmol g-1h-1 respectively, without employing any sacrificial agents. This work highlights the development of perovskite-based heterostructures and describes the efficient harnessing of redox potentials and charge carriers towards combined photocatalytic systems.

15.
Chemistry ; 29(46): e202301455, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37283568

RESUMEN

Electrochemical CO2 reduction reaction (CO2 RR) provides a promising approach for sustainable chemical fuel production of carbon neutrality. Neutral and alkaline electrolytes are predominantly employed in the current electrolysis system, but with striking drawbacks of (bi)carbonate (CO3 2- /HCO3 - ) formation and crossover due to the rapid and thermodynamically favourable reaction between hydroxide (OH- ) with CO2 , resulting in low carbon utilization efficiency and short-lived catalysis. Very recently, CO2 RR in acidic media can effectively address the (bi)carbonate issue; however, the competing hydrogen evolution reaction (HER) is more kinetically favourable in acidic electrolytes, which dramatically reduces CO2 conversion efficiency. Thus, it is a big challenge to effectively suppress HER and accelerate acidic CO2 RR. In this review, we begin by summarizing the recent progress of acidic CO2 electrolysis, discussing the key factors limiting the application of acidic electrolytes. We then systematically discuss addressing strategies for acidic CO2 electrolysis, including electrolyte microenvironment modulation, alkali cations adjusting, surface/interface functionalization, nanoconfinement structural design, and novel electrolyzer exploitation. Finally, the new challenges and perspectives of acidic CO2 electrolysis are suggested. We believe this timely review can arouse researchers' attention to CO2 crossover, inspire new insights to solve the "alkalinity problem" and enable CO2 RR as a more sustainable technology.

16.
Small ; 19(37): e2300841, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37154204

RESUMEN

Perovskite nanocrystals (PNCs) are promising candidates for solar-to-fuel conversions yet exhibit low photocatalytic activities mainly due to serious recombination of photogenerated charge carriers. Constructing heterojunction is regarded as an effective method to promote the separation of charge carriers in PNCs. However, the low interfacial quality and non-directional charge transfer in heterojunction lead to low charge transfer efficiency. Herein, a CsPbBr3 -CdZnS heterojunction is designed and prepared via an in situ hot-injection method for photocatalytic CO2 reduction. It is found that the high-quality interface in heterojunction and anisotropic charge transfer of CdZnS nanorods (NRs) enable efficient spatial separation of charge carriers in CsPbBr3 -CdZnS heterojunction. The CsPbBr3 -CdZnS heterojunction achieves a higher CO yield (55.8 µmol g-1  h-1 ) than that of the pristine CsPbBr3 NCs (13.9 µmol g-1  h-1 ). Furthermore, spectroscopic experiments and density functional theory (DFT) simulations further confirm that the suppressed recombination of charge carriers and lowered energy barrier for CO2 reduction contribute to the improved photocatalytic activity of the CsPbBr3 -CdZnS heterojunction. This work demonstrates a valid method to construct high-quality heterojunction with directional charge transfer for photocatalytic CO2 reduction. This study is expected to pave a new avenue to design perovskite-chalcogenide heterojunction.

17.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241963

RESUMEN

With the increasing demand for tooth bleaching in esthetic dentistry, its safety has been the focus of a comprehensive body of literature. In this context, the aim of the present study was to evaluate the application effects of pentalysine ß-carbonylphthalocyanine zinc (ZnPc(Lys)5)-mediated photodynamic therapy in dentin bleaching and its effects on dentin collagen. We first established a new and reproducible tooth staining model using dentin blocks stained by Orange II and then bleached with ZnPc(Lys)5 (25 µM) and hydrogen peroxide (10% or 30%). Data were analyzed with one- and two-way ANOVA and a significance level of p < 0.05. ZnPc(Lys)5 effectively bleached the dentin samples to an extent comparable to hydrogen peroxide at either 10% or 30% concentrations. Further studies on the dentin morphology, chemical element distribution, and protein constituents, using an electron microscope, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and SDS-PAGE, demonstrated that treatment with the photosensitizer preserved the dentin structure and, at the same time, the major organic component, collagen type I. For comparison, hydrogen peroxide (10% or 30%) treatment significantly degraded the collagen protein. This work indicated that the photosensitizer exerts potent bleaching effects on dentin staining; importantly, does not damage dentin and its collagen content; and opens up a new strategy to further explore various photosensitizers for the bleaching of both tooth enamel and dentin.


Asunto(s)
Peróxido de Hidrógeno , Blanqueamiento de Dientes , Peróxido de Hidrógeno/farmacología , Blanqueamiento de Dientes/métodos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/análisis , Dentina/química , Ácido Hipocloroso/análisis , Colágeno/farmacología , Color
18.
Sensors (Basel) ; 23(7)2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-37050509

RESUMEN

In vehicular edge computing (VEC), some tasks can be processed either locally or on the mobile edge computing (MEC) server at a base station (BS) or a nearby vehicle. In fact, tasks are offloaded or not, based on the status of vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication. In this paper, device-to-device (D2D)-based V2V communication and multiple-input multiple-output and nonorthogonal multiple access (MIMO-NOMA)-based V2I communication are considered. In actual communication scenarios, the channel conditions for MIMO-NOMA-based V2I communication are uncertain, and the task arrival is random, leading to a highly complex environment for VEC systems. To solve this problem, we propose a power allocation scheme based on decentralized deep reinforcement learning (DRL). Since the action space is continuous, we employ the deep deterministic policy gradient (DDPG) algorithm to obtain the optimal policy. Extensive experiments demonstrate that our proposed approach with DRL and DDPG outperforms existing greedy strategies in terms of power consumption and reward.

19.
J Colloid Interface Sci ; 643: 174-182, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37058892

RESUMEN

Aerogels, especially MXene aerogels, are an ideal multifunctional platform for developing efficient photocatalysts for CO2 reduction because they are featured by abundant catalytic sites, high electrical conductivity, high gas absorption ability and self-supported structure. However, the pristine MXene aerogel has almost no ability to utilize light, which requires additional photosensitizers to assist it in achieving efficient light harvesting. Herein, we immobilized colloidal CsPbBr3 nanocrystals (NCs) onto the self-supported Ti3C2Tx (where Tx represents surface terminations such as fluorine, oxygen, and hydroxyl groups) MXene aerogels for photocatalytic CO2 reduction. The resultant CsPbBr3/Ti3C2Tx MXene aerogels exhibit a remarkable photocatalytic activity toward CO2 reduction with total electron consumption rate of 112.6 µmol g-1h-1, which is 6.6-fold higher than that of the pristine CsPbBr3 NC powders. The improvement of the photocatalytic performance is presumably attributed to the strong light absorption, effective charge separation and CO2 adsorption in the CsPbBr3/Ti3C2Tx MXene aerogels. This work presents an effective perovskite-based photocatalyst in aerogel form and opens a new avenue for their solar-to-fuel conversions.

20.
J Colloid Interface Sci ; 629(Pt A): 233-242, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36081204

RESUMEN

All-inorganic lead-free halide double perovskites have emerged as rising star photocatalysts to substitute the toxic lead-based hailed perovskites (LHPs) owing to their unique photophysical properties. Nevertheless, their photocatalytic activities toward CO2 reduction are still far from comparable with the LHPs, associated with severe charge recombination and sluggish surface catalytic reaction. Herein, a delicate 0D/2D heterojunction of Cs2AgBiBr6/Bi2WO6 (CABB/BWO) was assembled by in-situ growing cubic CABB nanocrystals on the flat surface of BWO nanosheets via a facile hot-injection method. Density functional theory (DFT) calculations disclose that the work function and Fermi level difference between CABB and BWO give rise to charge redistribution at the interface upon the formation of the heterojunction, creating an internal electric field (IEF). Upon light irradiation, the IEF enables the photogenerated electron transfer from BWO to CABB via direct Z-scheme electron transfer mode with striking spatial charge separation as verified by in-situ X-ray photoelectron (XPS) and electron spin resonance (ESR) spectra. Consequently, the CABB/BWO heterojunction realizes 7-fold higher photocatalytic activity than pristine CABB with significant electron consumption rate of 87.66 µmol g-1h-1 under simulated solar light (AM 1.5G).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA