Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Chemistry ; : e202401426, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757380

RESUMEN

The fabrication of supramolecular light-harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non-covalent self-assembly of a sequential LHS by pillar[5]arene-based host-guest interaction in water and its applications in white light-emitting diode (LED) device and latent fingerprint imaging. The host-guest complex WP5⸧G self-assembles into nanoparticles in water and shows enhanced aggregation-induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white-light emission when the molar ratio of WP5⸧G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white-light emission. In addition, the sequential LHS exhibit color-tunable fluorescence including red emission, which have been successfully applied to high-resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host-guest interaction and explored its multi-functional applications in white-light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.

2.
Pest Manag Sci ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38629795

RESUMEN

BACKGROUND: Hylurgus ligniperda, an invasive species originating from Eurasia, is now a major forestry quarantine pest worldwide. In recent years, it has caused significant damage in China. While traps have been effective in monitoring and controlling pests, manual inspections are labor-intensive and require expertise in insect classification. To address this, we applied a two-stage cascade convolutional neural network, YOLOX-MobileNetV2 (YOLOX-Mnet), for identifying H. ligniperda and other pests captured in traps. This method streamlines target and non-target insect detection from trap images, offering a more efficient alternative to manual inspections. RESULTS: Two cascade convolutional neural network models were employed in two stages to detect both target and non-target insects from images captured in the same forest. Initially, You Only Look Once X (YOLOX) served as the target detection model, identifying insects and non-insects from the collected images, with non-insect targets subsequently filtered out. In the second stage, MobileNetV2, a classification network, classified the captured insects. This approach effectively reduced false positives from non-insect objects, enabled the inclusion of additional classification terms for multi-class insect classification models, and utilized sample control strategies to enhance classification performance. CONCLUSION: Application of the cascade convolutional neural network model accurately identified H. ligniperda, and Mean F1-score of all kinds of insects in the trap was 0.98. Compared to traditional insect classification, this method offers great improvement in the identification and early warning of forest pests, as well as provide technical support for the early prevention and control of forest pests. This article is protected by copyright. All rights reserved.

3.
Mol Biol Rep ; 51(1): 390, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38446255

RESUMEN

BACKGROUD: Paecilomyces variotii has important economic value in stimulating crop growth, biodegradation, and other aspects. Up to now, there are no research reports on its mitochondrial genome. METHODS AND RESULTS: The mitochondrial genome of Paecilomyces variotii was determined with the next-generation sequencing method (Illumina, NovaSeq), and its characteristics were analyzed using various bioinformatics approaches. The length of complete mitochondrial genome sequence of P. variotii is 40,965 bp and consists of 14 protein-coding genes, 2 ribosomal RNA genes, 1 ribosomal protein S3 gene, 26 transport RNA genes. The results of phylogenetics analysis using Bayesian inference and Maximum likelihood methods showed that P. variotii belongs to the Eurotiales order in the Thermoascaceae family, and 9 genera within the Eurotiomycetes class were effectively distinguished with high support rates (bootstrap value > 92% and posterior probabilities > 99%). The analysis of synonymous substitution rates and nonsynonymous substitution rates indicated that the Ka/Ks values of the 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class ranged from 0 to 0.4333. CONCLUSIONS: This study revealed the structural and sequence information characteristics of the mitochondrial genome of P. variotii, and the phylogenetic results strongly support its classification within the family Thermoascaceae, consistent with traditional morphological taxonomy studies. The 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class are subject to strong purifying (negative) selection. The results of this research provides an important molecular basis for the development of genomics, evolutionary genetics and molecular markers of P. variotii in the future.


Asunto(s)
Byssochlamys , Genoma Mitocondrial , Genoma Mitocondrial/genética , Filogenia , Teorema de Bayes , Hongos
4.
Soft Matter ; 20(12): 2823-2830, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38451223

RESUMEN

Amphiphilic asymmetric comb-like copolymers (AACCs) exhibit distinct self-assembly behaviours due to their unique architecture. However, the synthetic difficulties of well-defined AACCs have prohibited a systematic understanding of the architecture-morphology relationship. In this work, we conducted dissipative particle dynamics simulations to investigate the self-assembly behaviours of AACCs with responsive rigid side chains in selective solvents. The effects of side chain length, number of branches, and spacers on the morphology of aggregates were investigated by mapping out morphology diagrams. Besides, the numbers and surface areas of aggregates clearly depicted the morphological transitions during the self-assembly process. Moreover, the rod-to-coil conformation transitions were simulated to explore the stimuli-responsive behaviour of the AACCs with responsive rigid side chains by adjusting the bond angle parameter of the rigid chains. The results indicated that without the support of the rigid chains, the assembly structure collapsed, leading to the tube-to-channelized micelles and one-compartment-to-multicompartment vesicle morphology transformations. The simulation results are consistent with earlier experimental results, which can provide theoretical guidance for assembly toward desired nanostructures.

5.
Int J Oral Sci ; 16(1): 2, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195684

RESUMEN

The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.


Asunto(s)
Biomimética , Disbiosis , Humanos , Filogenia , Homeostasis , Espectrometría de Masas
6.
Artículo en Inglés | MEDLINE | ID: mdl-38270690

RESUMEN

PURPOSE: Although a number of studies involving small-vessel de novo coronary disease showed clinical benefits of drug-coated balloons (DCB), the role of DCB in large vessel lesions is still unclear. METHODS: We searched main electronic databases for randomized controlled trials (RCTs) comparing DCB with stents for large vessel de novo coronary artery disease. The primary endpoint was major cardiovascular adverse events (MACE), composite cardiovascular death (CD), myocardial infarction (MI), or target lesion revascularization (TLR). RESULTS: This study included 7 RCTs with 770 participants. DCB were associated with a marked risk reduction in MACE [Risk Ratio (RR): 0.48; 95% confidence interval [CI]: 0.24 to 0.97; P = 0.04], TLR (RR: 0.53; 95% CI: 0.25 to 1.14; P = 0.10), and late lumen loss [standard mean difference (SMD): -0.57; 95% CI: -1.09 to -0.05; P = 0.03] as compared with stents. There is no significant difference in MI (RR: 0.58; 95% CI: 0.21 to 1.54; P = 0.27), CD (RR: 0.33; 95% CI: 0.06 to 1.78; P = 0.19), and minimal lumen diameter (SMD: -0.34; 95% CI: -0.72 to 0.05; P = 0.08) between groups. In subgroup analyses, the risk reduction of MACE persisted in patients with chronic coronary syndrome (RR: 0.25; 95% CI: 0.07 to 0.89; P = 0.03), and patients receiving DCB vs. bare metal stent (RR: 0.19; 95% CI: 0.05 to 0.73; P = 0.01). In addition, there was no significant difference between the DCB group and the drug eluting stent group for MACE (RR: 0.69; 95% CI: 0.30 to 1.60; P = 0.38). CONCLUSION: DCB may be an effective therapeutic option in patients with large vessel de novo coronary artery disease.

7.
J Dermatol Sci ; 113(1): 18-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38185543

RESUMEN

BACKGROUND: Melanogenesis is the process of melanin maturation which not only protects skin from UV radiation but also plays an important role in antigenicity of melanomas. Imiquimod (IMQ) is a toll-like receptor 7 (TLR7) agonist that exhibits antiviral and anticancer activity. OBJECTIVE: To explore whether IMQ could induce melanogenesis in melanoma cells. METHODS: The mouse melanoma cell line B16F10, the mouse immortalized melanocyte Melan-A, and human melanoma cell lines MNT-1, C32 and A375 were utilized in this study. The pigmented level was observed by the centrifuged cell pellet. The intracellular and extracellular melanin levels were examined in the absorbance in NaOH-extracted cell lysate and cell-cultured medium, respectively. The expression of melanogenesis related proteins was examined by immunoblotting. The intracellular cyclic AMP amount was evaluated by the cAMP Glo assay kit. The activity of phosphodiesterase 4B (PDE4B) was investigated by CREB reporter assay with overexpressed PDE4B or not. RESULTS: We demonstrated that a low dose of IMQ could trigger melanogenesis in B16F10 cells. IMQ induced microphthalmia-associated transcription factor (MITF) nuclear translocation, upregulated the expression of melanogenesis-related proteins, increased tyrosinase (TYR) activity, and led to pigmentation in B16F10 cells. Next, we found that IMQ-induced melanogenesis was activated by excessive intracellular cAMP accumulation, which was regulated through IMQ-mediated PDE4B inhibition. Finally, IMQ-induced ROS production was found to be involved in melanogenesis by its control of PDE4B activity. CONCLUSIONS: Low dose of IMQ could activate melanogenesis through the ROS/PDE4B/PKA pathway in melanoma cells.


Asunto(s)
Melaninas , Melanoma Experimental , Animales , Ratones , Humanos , Imiquimod , Especies Reactivas de Oxígeno , Melanogénesis , Monofenol Monooxigenasa/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Línea Celular Tumoral
8.
J Appl Clin Med Phys ; 25(1): e14231, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38088928

RESUMEN

BACKGROUND: Ultrasonic for detecting and evaluating pleural effusion is an essential part of the Extended Focused Assessment with Sonography in Trauma (E-FAST) in emergencies. Our study aimed to develop an Artificial Intelligence (AI) diagnostic model that automatically identifies and segments pleural effusion areas on ultrasonography. METHODS: An Attention U-net and a U-net model were used to detect and segment pleural effusion on ultrasound images of 848 subjects through fully supervised learning. Sensitivity, specificity, precision, accuracy, F1 score, the receiver operating characteristic (ROC) curve, and the area under the curve (AUC) were used to assess the model's effectiveness in classifying the data. The dice coefficient was used to evaluate the segmentation performance of the model. RESULTS: In 10 random tests, the Attention U-net and U-net 's average sensitivity of 97% demonstrated that the pleural effusion was well detectable. The Attention U-net performed better at identifying negative images than the U-net, which had an average specificity of 91% compared to 86% for the U-net. Additionally, the Attention U-net was more accurate in predicting the pleural effusion region because its average dice coefficient was 0.86 as opposed to the U-net's average dice coefficient of 0.82. CONCLUSIONS: The Attention U-net showed excellent performance in detecting and segmenting pleural effusion on ultrasonic images, which is expected to enhance the operation and application of E-FAST in clinical work.


Asunto(s)
Inteligencia Artificial , Derrame Pleural , Humanos , Derrame Pleural/diagnóstico por imagen , Ultrasonografía , Área Bajo la Curva , Curva ROC
9.
Equine Vet J ; 56(3): 562-572, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37337455

RESUMEN

BACKGROUND: Phenylbutazone (PBZ) is the most commonly used drug to treat symptoms of lameness in horses; however, it is associated with adverse effects such as gastric ulcer syndrome (EGUS). Interestingly, many practitioners prescribe omeprazole (OME) concurrently with PBZ to prevent the development of EGUS. However, the efficacy and safety of this practice in Mongolian horses with chronic lameness remain unknown. OBJECTIVES: To evaluate the clinical effects of a combination of PBZ and OME on chronic lameness in Mongolian horses. STUDY DESIGN: Randomised block experimental design. METHODS: Eighteen Mongolian horses with lameness score was ≥3 points, were divided into three treatment groups, with six horses in each group: placebo (CON), PBZ (4.4 mg/kg PO q. 24 h), or PBZ plus OME (4 mg/kg PO q. 24 h; PBZ + OME) in a randomised block design based on the initial lameness score. The horses were treated for 15 days. During this period, weekly gastroscopy, and physiological and biochemical tests were performed. RESULTS: Both PBZ (median 1.0, interquartile range [IQR]: 0.8-1.3; p = 0.01) and PBZ + OME (median 1.0, IQR: 1.0-1.0; p = 0.01) significantly decreased the lameness score compared with before administration. In addition, PBZ significantly increased the equine glandular gastric disease (EGGD) score (3.0 ± 0.6, p < 0.001), GT-17 content (293.4 ± 21.8 pg/mL, p < 0.001), and pepsinogen-1 (PG1) content (295.3 ± 38.3 ng/mL, p < 0.001) compared with CON or PBZ + OME. However, it significantly reduced the total protein (53.6 ± 1.5 g/L, p < 0.05) and albumin (25.5 ± 1.8 g/L, p < 0.05) contents. Nevertheless, compared with PBZ, PBZ + OME significantly decreased the EGGD score (0.3 ± 0.5, p < 0.001) and significantly increased the gastric fluid pH (7.3 ± 0.5, p < 0.001), total protein content (62.5 ± 4.6 g/L, p = 0.009), and albumin content (29.4 ± 1.1 g/L, p = 0.004). Meanwhile, they significantly diminished the gastrin 17 (GT-17) (162.0 ± 21.0 pg/mL, p < 0.001) and PG1 (182.4 ± 22.5 ng/mL, p < 0.001) contents. MAIN LIMITATIONS: Individual differences in horses were larger, but the sample size was small. There was larger interval between observations for each index. CONCLUSIONS: Compared with PBZ alone, PBZ + OME had no therapeutic effect on chronic lameness; however, it reduced the occurrence of EGGD in Mongolian horses. Horses may be protected against chronic lameness and PBZ-induced EGGD by increasing the pH value, decreasing serum PG1 and GT-17 content, and preventing the reduction of myeloperoxidase content.


Asunto(s)
Enfermedades de los Caballos , Úlcera Gástrica , Caballos , Animales , Antiinflamatorios no Esteroideos , Omeprazol , Cojera Animal/tratamiento farmacológico , Cojera Animal/prevención & control , Fenilbutazona/uso terapéutico , Fenilbutazona/efectos adversos , Úlcera Gástrica/tratamiento farmacológico , Úlcera Gástrica/prevención & control , Úlcera Gástrica/veterinaria , Enfermedades de los Caballos/tratamiento farmacológico , Enfermedades de los Caballos/prevención & control , Enfermedades de los Caballos/inducido químicamente , Albúminas/efectos adversos
10.
Adv Mater ; 36(14): e2311149, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38153318

RESUMEN

Slow multi-proton coupled electron transfer kinetics and unexpected desorption of intermediates severely hinder the selectivity of CO2 methanation. In this work, a one-stone-two-bird strategy of pumping protons and improving adsorption configuration/capability enabled by electron localization is developed to be highly efficient for CH4 electrosynthesis over Cu single atoms anchored on bismuth vacancies of BiVO4 (Bi1-xVO4─Cu), with superior kinetic isotope effect and high CH4 Faraday efficiency (92%), far outperforming state-of-the-art electrocatalysts for CO2 methanation. Control experiments and theoretical calculations reveal that the bismuth vacancies (VBi) not only act as active sites for H2O dissociation but also induce electron transfer toward Cu single-atom sites. The VBi-induced electron localization pumps *H from VBi sites to Cu single atoms, significantly promoting the generation and stabilization of the pivotal intermediate (*CHO) for highly selective CH4 electrosynthesis. The metal vacancies as new initiators show enormous potential in the proton transfer-involved hydrogenative conversion processes.

11.
Neural Regen Res ; 19(5): 998-1005, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37862201

RESUMEN

Mitochondria are critical cellular energy resources and are central to the life of the neuron. Mitophagy selectively clears damaged or dysfunctional mitochondria through autophagic machinery to maintain mitochondrial quality control and homeostasis. Mature neurons are postmitotic and consume substantial energy, thus require highly efficient mitophagy pathways to turn over damaged or dysfunctional mitochondria. Recent evidence indicates that mitophagy is pivotal to the pathogenesis of neurological diseases. However, more work is needed to study mitophagy pathway components as potential therapeutic targets. In this review, we briefly discuss the characteristics of nonselective autophagy and selective autophagy, including ERphagy, aggrephagy, and mitophagy. We then introduce the mechanisms of Parkin-dependent and Parkin-independent mitophagy pathways under physiological conditions. Next, we summarize the diverse repertoire of mitochondrial membrane receptors and phospholipids that mediate mitophagy. Importantly, we review the critical role of mitophagy in the pathogenesis of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Last, we discuss recent studies considering mitophagy as a potential therapeutic target for treating neurodegenerative diseases. Together, our review may provide novel views to better understand the roles of mitophagy in neurodegenerative disease pathogenesis.

12.
Ultrasound Med Biol ; 49(12): 2565-2572, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37752018

RESUMEN

OBJECTIVE: Accurately predicting nipple-areola complex (NAC) involvement in breast cancer is essential for identifying eligible patients for a nipple-sparing mastectomy. This study was aimed at developing a pre-operative nomogram for NAC involvement in breast cancer using conventional ultrasound (US) and contrast-enhanced ultrasound (CEUS). METHODS: All patients with primary breast cancer confirmed by pre-operative biopsy underwent US and CEUS examinations. Post-operative pathology was used as the gold standard in assessing NAC involvement. Lasso regression was used to select the predictors most associated with NAC involvement. A nomogram was constructed to calculate the diagnostic efficacy. The data were internally verified with 500 bootstrapped replications, and a calibration curve was generated to validate the predictive capability. RESULTS: Seventy-six patients with primary breast cancer were included in this study, which included 16 patients (21.1%) with NAC involvement and 60 patients (78.9%) without NAC involvement. Among the 23 features of US and CEUS, Lasso regression selected one US feature and two CEUS features, namely, ductal echo extending from the lesion, ductal enhancement extending to the nipple and focal nipple enhancement. A nomogram was constructed, and the results revealed that the area under the curve, sensitivity, specificity and accuracy were 0.891, 81.3%, 86.7% and 85.5%, respectively. The calibration curve exhibited good consistency between the predicted probability and the actual probability. CONCLUSION: The nomogram developed based on US and CEUS had good performance in predicting NAC involvement in breast cancer before surgery, which may facilitate the selection of suitable patients for NAC preservation with greater oncological safety.


Asunto(s)
Neoplasias de la Mama , Mastectomía , Humanos , Femenino , Mastectomía/métodos , Estudios Prospectivos , Pezones/diagnóstico por imagen , Pezones/cirugía , Pezones/patología , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Nomogramas , Estudios Retrospectivos
13.
J Org Chem ; 88(19): 13699-13711, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37747962

RESUMEN

The selective C(sp3)-S bond cleavage of thioethers was first developed to prepare unsymmetrical disulfides by using electrophilic halogenation reagents. In this strategy, NBS (N-bromosuccinimide) achieves selective furfuryl C(sp3)-S bond cleavage of furfuryl alkylthioethers at room temperature. Meanwhile, NFSI (N-fluorobenzenesulfonimide) enables selective methyl C(sp3)-S bond cleavage of aryl and alkyl methylthioethers at an elevated temperature. Notably, the substrate scope investigation indicates that the order of selectivity of the C-S bond cleavage is furfuryl C(sp3)-S > benzyl C(sp3)-S > alkyl C(sp3)-S > C(sp2)-S bond. Moreover, this practical and operationally simple strategy also provides an important complementary way to access various unsymmetrical disulfides with excellent functional group tolerances and moderate to good yields.

14.
Sci Signal ; 16(801): eadg1849, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37669396

RESUMEN

In eukaryotes, lactate produced during glycolysis is involved in regulating multiple metabolic processes through lysine lactylation (Kla). To explore the potential link between metabolism and Kla in prokaryotes, we investigated the distribution of Kla in the cariogenic bacterium Streptococcus mutans during planktonic growth in low-sugar conditions and in biofilm-promoting, high-sugar conditions. We identified 1869 Kla sites in 469 proteins under these two conditions, with the biofilm growth state showing a greater number of lactylated sites and proteins. Although high sugar increased Kla globally, it reduced lactylation of RNA polymerase subunit α (RpoA) at Lys173. Lactylation at this residue inhibited the synthesis of extracellular polysaccharides, a major constituent of the cariogenic biofilm. The Gcn5-related N-acetyltransferase (GNAT) superfamily enzyme GNAT13 exhibited lysine lactyltransferase activity in cells and lactylated Lys173 in RpoA in vitro. Either GNAT13 overexpression or lactylation of Lys173 in RpoA inhibited biofilm formation. These results provide an overview of the distribution and potential functions of Kla and improve our understanding of the role of lactate in the metabolic regulation of prokaryotes.


Asunto(s)
Lisina , Streptococcus mutans , Biopelículas , Glucólisis , Ácido Láctico , Azúcares
15.
Chempluschem ; 88(10): e202300431, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37609789

RESUMEN

A guest molecule containing a short alkyl spacer between the tetraphenylethylene group and the methylpyridinium group was designed and synthesized. After complexation with a water-soluble pillar[5]arene, the resulting host-guest complex can further self-assemble into fluorescence-emitting nanoparticles in water. By loading a commercially available dye Rhodamine 6G into the nanoparticles, an efficient artificial light-harvesting system with high donor/acceptor ratios (>400/1) was successfully constructed. The obtained systems show considerable antenna effects with values of more than 10 times. The system also exhibits tunable fluorescence emission behavior and can be used as a fluorescent ink for information encryption.

16.
Nat Commun ; 14(1): 3646, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37339952

RESUMEN

Acquisition of new stem cell fates relies on the dissolution of the prior regulatory network sustaining the existing cell fates. Currently, extensive insights have been revealed for the totipotency regulatory network around the zygotic genome activation (ZGA) period. However, how the dissolution of the totipotency network is triggered to ensure the timely embryonic development following ZGA is largely unknown. In this study, we identify the unexpected role of a highly expressed 2-cell (2C) embryo specific transcription factor, ZFP352, in facilitating the dissolution of the totipotency network. We find that ZFP352 has selective binding towards two different retrotransposon sub-families. ZFP352 coordinates with DUX to bind the 2C specific MT2_Mm sub-family. On the other hand, without DUX, ZFP352 switches affinity to bind extensively onto SINE_B1/Alu sub-family. This leads to the activation of later developmental programs like ubiquitination pathways, to facilitate the dissolution of the 2C state. Correspondingly, depleting ZFP352 in mouse embryos delays the 2C to morula transition process. Thus, through a shift of binding from MT2_Mm to SINE_B1/Alu, ZFP352 can trigger spontaneous dissolution of the totipotency network. Our study highlights the importance of different retrotransposons sub-families in facilitating the timely and programmed cell fates transition during early embryogenesis.


Asunto(s)
Retroelementos , Factores de Transcripción , Animales , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Retroelementos/genética , Solubilidad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cigoto/metabolismo
17.
Am J Clin Oncol ; 46(8): 337-345, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37146258

RESUMEN

OBJECTIVES: Competing risk models were used in this study. The purpose of this study was to assess the predictive usefulness of lymph node characteristics in elderly patients with stage III serous ovarian cancer. METHODS: We conducted a retrospective analysis on 148,598 patients from 2010 to 2016 using the surveillance, epidemiology, and end results database. Lymph node characteristics were collected and examined, including the number of lymph nodes retrieved the number of lymph nodes examined (ELN) and the number of positive lymph nodes (PN). Using competing risk models, we evaluated the connection between these variables and overall survival (OS) and disease-specific survival (DSS). RESULTS: This study included a total of 3457 ovarian cancer patients. Multivariate analysis using the COX proportional hazards model found that ELN>22 was an independent predictive factor for both OS (hazard ratio [HR] [95% CI]=0.688 [0.553 to 0.856], P <0.05) and DSS (HR [95% CI]=0.65 [0.512 to 0.826], P <0.001), PN>8 was identified as a significant risk factor for both OS (HR [95% CI]=0.908 [0.688 to 1.199], P =0.497) and DSS (HR [95% CI]=0.926 [0.684 to 1.254], P =0.62). Subsequently, using the competing risk model, ELN>22 was found to be an independent protective factor for DSS (HR [95% CI]=0.738 [0.574 to 0.949], P =0.018), while PN>8 was identified as a risk factor for DSS (HR [95% CI]=0.999 [0.731 to 1.366], P =1). CONCLUSIONS: Our findings demonstrate the robustness of the competing risk model to evaluate the results of the COX proportional hazards model analysis.


Asunto(s)
Ganglios Linfáticos , Neoplasias Ováricas , Humanos , Femenino , Anciano , Pronóstico , Estudios Retrospectivos , Estadificación de Neoplasias , Ganglios Linfáticos/patología , Carcinoma Epitelial de Ovario/patología
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 673-678, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37248604

RESUMEN

Droplet-based microfluidics is a technology that generates and manipulates highly uniform droplets, ranging from picoliter to nanoliter droplets, in microchannels under precise control. In biological research, each droplet can be used to encapsulate a small group of cells or even a single cell, and then serve as an individual container for biochemical reaction, which is well suited for high-throughput and high-resolution biochemical analysis. In the field of microbial research, from cultivation and identification of microbes to the investigation of the spatiotemporal dynamics of microbial communities, from precise quantitation of microbiota to systematic study of microbial interactions, and from the isolation of rare and unculturable microbes to the development of genetically engineered strains, droplet microfluidic technology has played an important promotional role in all these aspects. Droplet microfluidics shows potential for becoming a basic tool for exploring single-cell microbes in microbiological research. In this review, we gave a brief overview of the technical basis of droplet microfluidics. Then, we presented its latest applications in microbial research and had some discussions, aiming to provide a reference for relevant research on microorganisms.


Asunto(s)
Técnicas Analíticas Microfluídicas , Microfluídica
19.
Int J Cardiol ; 384: 90-99, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37019219

RESUMEN

Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previous studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.


Asunto(s)
Enfermedad de la Arteria Coronaria , MicroARNs , ARN Largo no Codificante , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/genética , Enfermedad de la Arteria Coronaria/terapia , Pronóstico , ARN Largo no Codificante/genética , Biomarcadores
20.
Chem Commun (Camb) ; 59(36): 5343-5364, 2023 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-37066600

RESUMEN

The activation and transformation of organic chemical bonds is a fundamental scientific problem. In the past several decades, C-S bond cleavage for the construction of C-C and C-heteroatom bonds has received tremendous attention in organic chemistry. Although significant progress has been made in the field of transition metal strategies, a variety of novel transition-metal-free strategies have also been developed using halogenated reagents, oxidants, acids, and bases. Moreover, organic photochemical and electrochemical methods have also been developed to achieve transition-metal-free C-S bond cleavage of organosulfur compounds. To date, however, no comprehensive review of transition-metal-free strategies has been reported. Therefore, we herein provide a comprehensive review of the major advances in the field of the transition-metal-free C-S bond cleavage and transformation of organosulfur compounds, including thioethers, sulfoxides, sulfones, thioacetals, sulfonium salts, and sulfur ylides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...