Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37448039

RESUMEN

Multiple unmanned aerial vehicles (UAVs) have a greater potential to be widely used in UAV-assisted IoT applications. UAV formation, as an effective way to improve surveillance and security, has been extensively of concern. The leader-follower approach is efficient for UAV formation, as the whole formation system needs to find only the leader's trajectory. This paper studies the leader-follower surveillance system. Owing to different scenarios and assignments, the leading velocity is dynamic. The inevitable communication time delays resulting from information sending, communicating and receiving process bring challenges in the design of real-time UAV formation control. In this paper, the design of UAV formation tracking based on deep reinforcement learning (DRL) is investigated for high mobility scenarios in the presence of communication delay. To be more specific, the optimization UAV formation problem is firstly formulated to be a state error minimization problem by using the quadratic cost function when the communication delay is considered. Then, the delay-informed Markov decision process (DIMDP) is developed by including the previous actions in order to compensate the performance degradation induced by the time delay. Subsequently, an extended-delay informed deep deterministic policy gradient (DIDDPG) algorithm is proposed. Finally, some issues, such as computational complexity analysis and the effect of the time delay are discussed, and then the proposed intelligent algorithm is further extended to the arbitrary communication delay case. Numerical experiments demonstrate that the proposed DIDDPG algorithm can significantly alleviate the performance degradation caused by time delays.


Asunto(s)
Algoritmos , Inteligencia , Cadenas de Markov , Políticas , Registros
2.
Planta ; 257(6): 116, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37171508

RESUMEN

MAIN CONCLUSION: Soil water content only affected regeneration time, whereas the NSC content was related to the success of alfalfa regeneration. Non-structural carbohydrates (NSCs) are important factors influencing the overwintering and regeneration of alfalfa. In this study, we analyzed eight in-situ samplings at three depths of coarse roots (crown, 20 and 40 cm depths) during the overwintering period and assessed the dynamic change and allocation of root NSCs under three irrigation frequencies (irrigation once every second day/4 days/8 days). Primary results showed that: (i) before cold acclimation, irrigation once every second day was beneficial to the accumulation of soluble sugars and starch in crown tissues, which would be maintained until the following spring and accelerate the regeneration time of alfalfa; (ii) during the overwintering process, the soluble sugars and starch contents in the crown were significantly higher than those in deeper roots, and there was an asynchronous effect caused by the change in soluble sugars and starch among roots at three depths; and (iii) the change trend of soluble sugar and starch contents was consistent with that of semi-lethal temperature, and there was a significant negative correlation between the content of soluble sugar (R2 = 0.8046) and starch (R2 = 0.6332) and the semi-lethal temperature. This study demonstrated that NSCs are the key driver of cold tolerance and regeneration under the three irrigation frequencies evaluated. Our results provide further insight into the allocation of NSCs in winter. This improved understanding of the mechanism of overwintering will allow for improved water management of alfalfa in high latitude areas.


Asunto(s)
Medicago sativa , Raíces de Plantas , Carbohidratos , Azúcares , Almidón , Agua
3.
Sci Rep ; 12(1): 14977, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056096

RESUMEN

Alfalfa is a high-quality forage legume species that is widely cultivated at high latitudes worldwide. However, a decrease in cold tolerance in early spring seriously affects regrowth and persistence of alfalfa. There has been limited research on the metabolomic changes that occur during de-acclimation. In this study, a liquid chromatography-mass spectrometry system was used to compare the metabolites in two alfalfa cultivars during a simulated overwintering treatment. In four pairwise comparisons, 367 differential metabolites were identified, of which 31 were annotated according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Many of these metabolites were peptides, carbohydrates, and lipids. At the subclass level, 17 major pathways were revealed to be significantly enriched (P < 0.05). The main differential metabolites included amino acids, peptides and analogs, carbohydrates, and glycerol phosphocholines. A metabolomic analysis showed that the up-regulation of unsaturated fatty acids and amino acids as well as the enhancement of the related metabolic pathways might be an effective strategy for increasing alfalfa cold tolerance. Furthermore, glycerophospholipid metabolism affects alfalfa cold tolerance in early spring. Study results provide new insights about the changes in alfalfa metabolites that occur during de-acclimation, with potential implications for the selection and breeding of cold-tolerant cultivars.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Medicago sativa , Aclimatación , Aminoácidos/metabolismo , Carbohidratos , Medicago sativa/genética , Fitomejoramiento
4.
PeerJ ; 9: e11962, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34589294

RESUMEN

Climate change (rainfall events and global warming) affects the survival of alfalfa (Medicago sativa L.) in winter. Appropriate water management can quickly reduce the mortality of alfalfa during winter. To determine how changes in water affect the cold resistance of alfalfa, we explored the root system traits under different rainfall events and the effects on cold resistance in three alfalfa cultivars. These were exposed to three simulated rainfall events (SRE) × two phases in a randomized complete block design with six replications. The three cultivars were WL168, WL353 and WL440, and the three SRE were irrigation once every second day (D2), every four days (D4) and every eight days (D8). There were two phases: before cold acclimation and after cold acclimation. Our results demonstrated that a period of exposure to low temperature was required for alfalfa to achieve maximum cold resistance. The root system tended toward herringbone branching under D8, compared with D2 and D4, and demonstrated greater root biomass, crown diameter, root volume, average link length and topological index. Nevertheless, D8 had less lateral root length, root surface area, specific root length, root forks and fractal dimensions. Greater root biomass and topological index were beneficial to cold resistance in alfalfa, while more lateral roots and root forks inhibited its ability to survive winter. Alfalfa roots had higher proline, soluble sugar and starch content in D8 than in D2 and D4. In contrast, there was lower malondialdehyde in D8, indicating that alfalfa had better cold resistance following a longer irrigation interval before winter. After examining root biomass, root system traits and physiological indexes we concluded that WL168 exhibited stronger cold resistance. Our results contribute to greater understanding of root and cold stress, consequently providing references for selection of cultivars and field water management to improve cold resistance of alfalfa in the context of changes in rainfall patterns.

5.
Plant Mol Biol ; 96(4-5): 473-492, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29532290

RESUMEN

KEY MESSAGE: The induction of miR399 and miR398 and the inhibition of miR156, miR159, miR160, miR171, miR2111, and miR2643 were observed under Pi deficiency in alfalfa. The miRNA-mediated genes involved in basic metabolic process, root and shoot development, stress response and Pi uptake. Inorganic phosphate (Pi) deficiency is known to be a limiting factor in plant development and growth. However, the underlying miRNAs associated with the Pi deficiency-responsive mechanism in alfalfa are unclear. To elucidate the molecular mechanism at the miRNA level, we constructed four small RNA (sRNA) libraries from the roots and shoots of alfalfa grown under normal or Pi-deficient conditions. In the present study, alfalfa plants showed reductions in biomass, photosynthesis, and Pi content and increases in their root-to-shoot ratio and citric, malic, and succinic acid contents under Pi limitation. Sequencing results identified 47 and 44 differentially expressed miRNAs in the roots and shoots, respectively. Furthermore, 909 potential target genes were predicted, and some targets were validated by RLM-RACE assays. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed prominent enrichment in signal transducer activity, binding and basic metabolic pathways for carbohydrates, fatty acids and amino acids; cellular response to hormone stimulus and response to auxin pathways were also enriched. qPCR results verified that the differentially expressed miRNA profile was consistent with sequencing results, and putative target genes exhibited opposite expression patterns. In this study, the miRNAs associated with the response to Pi limitation in alfalfa were identified. In addition, there was an enrichment of miRNA-targeted genes involved in biological regulatory processes such as basic metabolic pathways, root and shoot development, stress response, Pi transportation and citric acid secretion.


Asunto(s)
Medicago sativa/genética , Medicago sativa/fisiología , MicroARNs/genética , Fosfatos/deficiencia , Secuencia de Bases , Secuencia Conservada/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/metabolismo , Modelos Biológicos , Raíces de Plantas/genética , Brotes de la Planta/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Reproducibilidad de los Resultados
6.
Nanoscale Res Lett ; 10(1): 996, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26173675

RESUMEN

Wurtzite CuInS2 nanoleaves were synthesized by Cu1.94S-assisted growth. By observing the evolution of structures and phases during the growth process, Cu1.94S nanocrystals were found to be formed after uninterrupted oxidation and sulfidation of copper nanoparticles at the early stage, serving as catalysts to introduce the Cu and In species into CuInS2 nanoleaves growth for inherent property of fast ionic conductor. The obtained CuInS2 nanoleaves were characterized by scanning transmission electron microscopy, transmission electron microscopy, fast Fourier transform, X-ray diffraction, and energy dispersive X-ray spectroscopy mapping. The enhancement of photoresponsive current of CuInS2 nanoleaf film, evaluated by I-V curves of nanoleaf film, is believed to be attributed to the fast carrier transport benefit from the nature of single crystalline of CuInS2 nanoleaves.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA