Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
IEEE Trans Biomed Eng ; PP2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39115989

RESUMEN

OBJECTIVE: This study investigates the feasibility of non-contact retrospective respiratory gating and cardiac sensing using continuous wave Doppler radar deployed in an MRI system. The proposed technique can complement existing sensors which are difficult to apply for certain patient populations. METHODS: We leverage a software-defined radio for continuous wave radar at 2.4 GHz to detect in-vivo respiratory and cardiac timescrolled signals. In-bore radar signal demodulation is verified with full electromagnetic simulations, and its functionality is validated on a test bench and within the MR bore with four normal subjects. Radar sensing was compared against well-known references: electrocardiography on a test bench, system bellows, and pulsed plethysmography sensors with in the MRI bore. RESULTS: The feasibility of noncontact cardiac rate sensing, dynamic breathing sequence synchronization, and in-bore motion correction for retrospective respiratory gating applications was demonstrated. Optimal radar front-end system arrangement, along with spectral isolation and narrow bandwidth of operation, enable MRI-compatible and interference-free motion sensing. The signal-to-noise-ratio degradation by the radar integration was within 4.5% on phantom images. CONCLUSION: We confirmed that in-bore retrospective motion correction using CW Doppler radar is feasible without MRI system constraints. SIGNIFICANCE: Non-contact motion correction sensing in MRI may provide better patient handling and through put by complementing existing system sensors and motion correction algorithms.

2.
IEEE Trans Med Imaging ; PP2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39146168

RESUMEN

Accelerated MRI protocols routinely involve a predefined sampling pattern that undersamples the k-space. Finding an optimal pattern can enhance the reconstruction quality, however this optimization is a challenging task. To address this challenge, we introduce a novel deep learning framework, AutoSamp, based on variational information maximization that enables joint optimization of sampling pattern and reconstruction of MRI scans. We represent the encoder as a non-uniform Fast Fourier Transform that allows continuous optimization of k-space sample locations on a non-Cartesian plane, and the decoder as a deep reconstruction network. Experiments on public 3D acquired MRI datasets show improved reconstruction quality of the proposed AutoSamp method over the prevailing variable density and variable density Poisson disc sampling for both compressed sensing and deep learning reconstructions. We demonstrate that our data-driven sampling optimization method achieves 4.4dB, 2.0dB, 0.75dB, 0.7dB PSNR improvements over reconstruction with Poisson Disc masks for acceleration factors of R = 5, 10, 15, 25, respectively. Prospectively accelerated acquisitions with 3D FSE sequences using our optimized sampling patterns exhibit improved image quality and sharpness. Furthermore, we analyze the characteristics of the learned sampling patterns with respect to changes in acceleration factor, measurement noise, underlying anatomy, and coil sensitivities. We show that all these factors contribute to the optimization result by affecting the sampling density, k-space coverage and point spread functions of the learned sampling patterns.

3.
Front Genet ; 15: 1403913, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076170

RESUMEN

Objective: To accurately verify the pathogenicity of variants of uncertain significance (VUS) in MUT and MMACHC genes through mass spectrometry and silico analysis. Methods: This multicenter retrospective study included 35 participating units (ClinicalTrials.gov ID: NCT06183138). A total of 3,071 newborns (within 7 days of birth) were sorted into carrying pathogenic/likely pathogenic (P/LP) variants and carrying VUS, non-variant groups. Differences in metabolites among the groups were calculated using statistical analyses. Changes in conservatism, free energy, and interaction force of MMUT and MMACHC variants were analyzed using silico analysis. Results: The percentage of those carrying VUS cases was 68.15% (659/967). In the MMUT gene variant, we found that C3, C3/C2, and C3/C0 levels in those carrying the P/LP variant group were higher than those in the non-variant group (p < 0.000). The conservative scores of those carrying the P/LP variant group were >7. C3, C3/C0, and C3/C2 values of newborns carrying VUS (c.1159A>C and c.1286A>G) were significantly higher than those of the non-variant group and the remaining VUS newborns (p < 0.005). The conservative scores of c.1159A>C and c.1286A>G calculated by ConSurf analysis were 9 and 7, respectively. Unfortunately, three MMA patients with c.1159A>C died during the neonatal period; their C3, C3/C0, C3/C2, and MMA levels were significantly higher than those of the controls. Conclusion: Common variants of methylmalonic acidemia in the study population were categorized as VUS. In the neonatal period, the metabolic biomarkers of those carrying the P/LP variant group of the MUT gene were significantly higher than those in the non-variant group. If the metabolic biomarkers of those carrying VUS are also significantly increased, combined with silico analysis the VUS may be elevated to a likely pathogenic variant. The results also suggest that mass spectrometry and silico analysis may be feasible screening methods for verifying the pathogenicity of VUS in other inherited metabolic diseases.

4.
iScience ; 27(7): 110233, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39021808

RESUMEN

The role of fasting plasma glucose (FPG), glycated hemoglobin (HbA1c), and triglyceride-glucose index (TyG index) in predicting all-cause and cause-specific mortalities remains elusive. This study included 384,420 adults from the Shanghai cohort and the UK Biobank (UKB) cohort. After multivariable adjustment in the Cox models, FPG ≥7.0 mmol/L or HbA1c ≥ 6.5% increased the risk of all-cause mortality, FPG ≥5.6 mmol/L or HbA1c ≥ 6.5% increased CVD-related mortality, and higher or lower TyG index increased all-cause and CVD-related mortalities in the Shanghai cohort; FPG ≥5.6 mmol/L, HbA1c ≥ 5.7%, TyG index <8.31 or ≥9.08 increased the risks of all-cause, CVD-related, and cancer-related mortalities in the UKB cohort. FPG or HbA1c increased the discrimination of the conventional risk model in predicting all-cause and CVD-related mortalities in both cohorts. Thus, increased levels of FPG and HbA1c and U-shaped TyG index increase the risks of all-cause especially CVD-related mortalities.

5.
Environ Sci Pollut Res Int ; 31(32): 44730-44743, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954343

RESUMEN

Owing to the impact of the effluent C/N from the secondary structures of urban domestic wastewater treatment plants, the denitrification efficiency in constructed wetlands (CWs) is not satisfactory, limiting their widespread application in the deep treatment of urban domestic wastewater. To address this issue, we constructed enhanced CWs and conducted orthogonal experiments to investigate the effects of different factors (C/N, fillers, and plants) on the removal of conventional pollutants and the reduction of greenhouse gas (GHG) emission. The experimental results indicated that a C/N of 8, manganese sand, and calamus achieved the best denitrification efficiencies with removal efficiencies of 85.7%, 95.9%, and 88.6% for TN, NH4+-N, and COD, respectively. In terms of GHG emission reduction, this combination resulted in the lowest global warming potential (176.8 mg/m2·day), with N2O and CH4 emissions of 0.53 and 1.25 mg/m2·day, respectively. Characterization of the fillers revealed the formation of small spherical clusters of phosphates on the surfaces of manganese sand and pyrite and iron oxide crystals on the surface of pyrite. Additionally, the surface Mn (II) content of the manganese sand increased by 8.8%, and the Fe (III)/Fe (II) and SO42-/S2- on pyrite increased by 2.05 and 0.26, respectively, compared to pre-experiment levels. High-throughput sequencing indicated the presence of abundant autotrophic denitrifying bacteria (Sulfuriferula, Sulfuritalea, and Thiobacillus) in the CWs, which explains denitrification performance of the enhanced CWs. This study aimed to explore the mechanism of efficient denitrification and GHG emission reduction in the enhanced CWs, providing theoretical guidance for the deep treatment of urban domestic wastewater.


Asunto(s)
Gases de Efecto Invernadero , Aguas Residuales , Humedales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Desnitrificación
6.
Medicine (Baltimore) ; 103(23): e38466, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847710

RESUMEN

RATIONALE: Sclerosing angiomatoid nodular transformation (SANT) of the spleen is an uncommon benign vascular lesion with an obscure etiology. It predominantly affects middle-aged women and presents with nonspecific clinical signs, making preoperative diagnosis challenging. The definitive diagnosis of SANT relies on pathological examination following splenectomy. This study aims to contribute to the understanding of SANT by presenting a case series and reviewing the literature to highlight the clinical presentation, diagnostic challenges, and treatment outcomes. PATIENT CONCERNS: In this retrospective study, we analyzed the clinical data of 3 patients with confirmed SANT admitted from November 2013 to October 2023. The cases include a 25-year-old male, a 15-year-old female, and a 39-year-old male, each with a splenic mass. DIAGNOSES AND INTERVENTIONS: All of the three cases were treated by laparoscopic splenectomy (LS). Pathological examination confirmed SANT in all cases. OUTCOMES: No recurrence or metastasis was observed during a 10-year follow-up for the first 2 cases, and the third case showed no abnormalities at 2 months postoperatively. Despite its rarity, SANT is a significant condition due to its potential for misdiagnosis and the importance of distinguishing it from malignant lesions. The study underscores the utility of LS as a safe and effective treatment option. LESSONS: SANT is a rare benign tumor of the spleen, and the preoperative diagnosis of whom is challenging. LS is a safe and effective treatment for SANT, with satisfactory surgical outcomes and favorable long-term prognosis on follow-up. The study contributes to the limited body of research on this rare condition and calls for larger studies to validate these findings and improve clinical management.


Asunto(s)
Esplenectomía , Neoplasias del Bazo , Humanos , Masculino , Adulto , Femenino , Esplenectomía/métodos , Adolescente , Neoplasias del Bazo/patología , Neoplasias del Bazo/cirugía , Neoplasias del Bazo/diagnóstico , Bazo/patología , Histiocitoma Fibroso Benigno/patología , Histiocitoma Fibroso Benigno/cirugía , Histiocitoma Fibroso Benigno/diagnóstico , Estudios Retrospectivos , Laparoscopía/métodos , Diagnóstico Diferencial , Enfermedades del Bazo/cirugía , Enfermedades del Bazo/patología , Enfermedades del Bazo/diagnóstico
7.
Carbohydr Polym ; 339: 122292, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823937

RESUMEN

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.


Asunto(s)
Antioxidantes , Fermentación , Glicerol , Peso Molecular , Sphingomonas , Glicerol/química , Glicerol/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Sphingomonas/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Viscosidad , Prebióticos , Bifidobacterium/metabolismo
8.
Vaccines (Basel) ; 12(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932348

RESUMEN

Porphyromonas gingivalis (Pg), a Gram-negative anaerobic bacterium found in dental plaque biofilm within periodontal pockets, is the primary pathogenic microorganism responsible for chronic periodontitis. Infection by Pg significantly impacts the development and progression of various diseases, underscoring the importance of eliminating this bacterium for effective clinical treatment. While antibiotics are commonly used to combat Pg, the rise of antibiotic resistance poses a challenge to complete eradication. Thus, the prevention of Pg infection is paramount. Research suggests that surface antigens of Pg, such as fimbriae, outer membrane proteins, and gingipains, can potentially be utilized as vaccine antigens to trigger protective immune responses. This article overviews these antigens, discusses advancements in mucosal adjuvants (including immunostimulant adjuvants and vaccine-delivery adjuvants), and their application in Pg vaccine development. Furthermore, the review examines the advantages and disadvantages of different immune pathways and common routes of Pg vaccine immunization. By summarizing the current landscape of Pg vaccines, addressing existing challenges, and highlighting the potential of mucosal vaccines, this review offers new insights for the advancement and clinical implementation of Pg vaccines.

9.
Int J Biol Macromol ; 269(Pt 2): 132163, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729490

RESUMEN

Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.


Asunto(s)
Antibacterianos , Polisacáridos , Antibacterianos/farmacología , Antibacterianos/química , Polisacáridos/química , Polisacáridos/farmacología , Humanos , Animales , Acetilación , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo
10.
J Exp Bot ; 75(13): 4038-4051, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38490694

RESUMEN

Chilling stress caused by extreme weather is threatening global rice (Oryza sativa L.) production. Identifying components of the signal transduction pathways underlying chilling tolerance in rice would advance molecular breeding. Here, we report that OsMST6, which encodes a monosaccharide transporter, positively regulates the chilling tolerance of rice seedlings. mst6 mutants showed hypersensitivity to chilling, while OsMST6 overexpression lines were tolerant. During chilling stress, OsMST6 transported more glucose into cells to modulate sugar and abscisic acid signaling pathways. We showed that the transcription factor OsERF120 could bind to the DRE/CRT element of the OsMST6 promoter and activate the expression of OsMST6 to positively regulate chilling tolerance. Genetically, OsERF120 was functionally dependent on OsMST6 when promoting chilling tolerance. In summary, OsERF120 and OsMST6 form a new downstream chilling regulatory pathway in rice in response to chilling stress, providing valuable findings for molecular breeding aimed at achieving global food security.


Asunto(s)
Frío , Proteínas de Transporte de Monosacáridos , Oryza , Proteínas de Plantas , Plantones , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantones/fisiología , Plantones/genética , Plantones/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica de las Plantas
12.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 36(3): 298-302, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38538360

RESUMEN

OBJECTIVE: To evaluate the clinical efficacy of a single-session implantation of spinal cord electrical stimulation with neurophysiological monitoring a spinal cord electrical stimulator under general anesthesia with neurophysiological monitoring for the treatment of high-risk diabetic foot. METHODS: The clinical data of seven patients with high-risk diabetic foot who underwent spinal cord electrical stimulation in neurosurgery ward nine of Tianjin Huanhu Hospital from May 2022 to May 2023 were collected. The operation was performed under general anesthesia with the "C" arm X ray machine guidance and neurophysiological monitoring. The arterial diameter and peak flow rate of lower extremity, lower extremity skin temperature (calf skin temperature, foot skin temperature), visual analog scale (VAS), continuous distance of movement, blood glucose level and toe wound were compared between patients before and after surgery. RESULTS: A total of seven patients with high-risk diabetic foot were included. The diameters and peak flow rates of femoral artery, popliteal artery, anterior tibial artery, posterior tibial artery and dorsal foot artery in both lower limbs were significantly improved after surgery. All patients had different degrees of lower limb pain before operation. After operation, VAS score decreased significantly (1.1±0.9 vs. 6.8±3.4), the pain was significantly relieved, and the calf skin temperature and foot skin temperature were significantly higher than those before surgery [calf skin temperature (centigrade): 33.3±0.9 vs. 30.9±0.7, foot skin temperature (centigrade): 31.4±0.8 vs. 29.1±0.6], fasting blood glucose and postprandial blood glucose were significantly lower than those before surgery [fasting blood glucose (mmol/L): 7.6±1.4 vs. 10.5±1.2, postprandial blood glucose (mmol/L): 9.3±2.3 vs. 13.5±1.1], the differences were statistically significant (all P < 0.01). The lower limb movement of all seven patients was significantly improved after surgery, including one patient who needed wheelchair travel before surgery, and one patient who had intermittent claudication before surgery. Among them, one patient needed wheelchair travel and one patient had intermittent claudication before surgery. All patients could walk normally at 2 weeks after operation. Among the seven patients, two patients had the diabetic foot wound ulceration before surgery, which could not heal for a long time. One month after surgery, blood flow around the foot wound recovered and the healing was accelerated. The wound was dry and crusted around the wound, and the wound healed well. CONCLUSIONS: For diabetic high-risk foot patients who are intolerant to diabetic peripheral neuralgia and local anesthesia spinal cord electrical stimulation test, one-time implantation of spinal cord electrical stimulator under general anesthesia under neurophysiological monitoring can effectively alleviate peripheral neuralgia and other diabetic foot related symptoms, improve lower limb blood supply, and reduce the risk of toe amputation. Clinical practice has proved the effectiveness of this technique, especially for the early treatment of diabetic high-risk foot patients.


Asunto(s)
Diabetes Mellitus , Pie Diabético , Neuralgia , Humanos , Pie Diabético/cirugía , Claudicación Intermitente , Glucemia , Resultado del Tratamiento , Monitorización Neurofisiológica , Médula Espinal , Estimulación Eléctrica
13.
Math Biosci Eng ; 21(3): 4648-4668, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38549343

RESUMEN

The presence of asymptomatic carriers, often unrecognized as infectious disease vectors, complicates epidemic management, particularly when inter-community migrations are involved. We introduced a SAIR (susceptible-asymptomatic-infected-recovered) infectious disease model within a network framework to explore the dynamics of disease transmission amid asymptomatic carriers. This model facilitated an in-depth analysis of outbreak control strategies in scenarios with active community migrations. Key contributions included determining the basic reproduction number, $ R_0 $, and analyzing two equilibrium states. Local asymptotic stability of the disease-free equilibrium is confirmed through characteristic equation analysis, while its global asymptotic stability is investigated using the decomposition theorem. Additionally, the global stability of the endemic equilibrium is established using the Lyapunov functional theory.


Asunto(s)
Enfermedades Transmisibles , Redes Comunitarias , Humanos , Modelos Biológicos , Enfermedades Transmisibles/epidemiología , Número Básico de Reproducción , Susceptibilidad a Enfermedades
14.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542459

RESUMEN

The lipoxygenases (LOXs) are non-heme iron-containing dioxygenases that play an important role in plant growth and defense responses. There is scarce knowledge regarding the LOX gene family members and their involvement in biotic and abiotic stresses in potato. In this study, a total of 17 gene family members (StLOXs) in potato were identified and clustered into three subfamilies: 9-LOX type I, 13-LOX type I, and 13-LOX type II, with eleven, one, and five members in each subfamily based on phylogenetic analysis. By exploiting the RNA-seq data in the Potato Genome Sequencing Consortium (PGSC) database, the tissue-specific expressed and stress-responsive StLOX genes in double-monoploid (DM) potato were obtained. Furthermore, six candidate StLOX genes that might participate in drought and salt response were determined via qPCR analysis in tetraploid potato cultivars under NaCl and PEG treatment. Finally, the involvement in salt stress response of two StLOX genes, which were significantly up-regulated in both DM and tetraploid potato under NaCl and PEG treatment, was confirmed via heterologous expression in yeast under salt treatment. Our comprehensive analysis of the StLOX family provides a theoretical basis for the potential biological functions of StLOXs in the adaptation mechanisms of potato to stress conditions.


Asunto(s)
Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Tetraploidía , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Perfilación de la Expresión Génica
15.
J Transl Med ; 22(1): 170, 2024 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-38368381

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is characterized by aggressive progression and elevated mortality rates. This study aimed to investigate the regulatory effects of RBBP7 on HCC pathogenesis and the underlying mechanisms. METHODS: The expression and clinical feature of RBBP7 were evaluated using bioinformatics analysis and the assessment of clinical HCC samples. CCK8 and colony formation were employed to estimate cell proliferation function of RBBP7. Aerobic glycolysis levels of RBBP7 were evaluated by measuring ATP levels, lactic acid production, glucose uptake capacity, and the expression of relevant enzymes (PFKM, PKM2, and LDHA). The phosphorylation levels in PI3K/AKT signaling were measured by western blotting. The regulatory effect of transcription factors of specificity protein 1 (SP1) on RBBP7 mRNA expression was confirmed in dual-luciferase reporter assays and chromatin immunoprecipitation experiments. The proliferation- and glycolysis-associated proteins were assessed using immunofluorescence staining in vivo. RESULTS: We found that RBBP7 is expressed at high levels in HCC and predicts poor survival. Functional assays showed that RBBP7 promoted HCC proliferation and glycolysis. Mechanistically, it was demonstrated that RBBP7 activates the PI3K/AKT pathway, a crucial pathway in glycolysis, contributing to the progression of HCC. The outcomes of the dual-luciferase assay further confirmed that SP1 is capable of activating the promoter of RBBP7. CONCLUSIONS: RBBP7, which is up-regulated by SP1, promotes HCC cell proliferation and glycolysis through the PI3K/AKT pathway. The findings of this study suggest that RBBP7 is a potential biomarker for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Luciferasas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína 7 de Unión a Retinoblastoma/genética , Proteína 7 de Unión a Retinoblastoma/metabolismo
16.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38396758

RESUMEN

The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.


Asunto(s)
Antocianinas , Solanum tuberosum , Antocianinas/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Filogenia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regiones Promotoras Genéticas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
BMC Genomics ; 25(1): 10, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166714

RESUMEN

BACKGROUND: Plant U-box (PUB) E3 ubiquitin ligases have vital effects on various biological processes. Therefore, a comprehensive and systematic identification of the members of the U-box gene family in potato will help to understand the evolution and function of U-box E3 ubiquitin ligases in plants. RESULTS: This work identified altogether 74 PUBs in the potato (StPUBs) and examined their gene structures, chromosomal distributions, and conserved motifs. There were seventy-four StPUB genes on ten chromosomes with diverse densities. As revealed by phylogenetic analysis on PUBs within potato, Arabidopsis, tomato (Solanum lycopersicum), cabbage (Brassica oleracea), rice (Oryza sativa), and corn (Zea mays), were clustered into eight subclasses (C1-C8). According to synteny analysis, there were 40 orthologous StPUB genes to Arabidopsis, 58 to tomato, 28 to cabbage, 7 to rice, and 8 to corn. In addition, RNA-seq data downloaded from PGSC were utilized to reveal StPUBs' abiotic stress responses and tissue-specific expression in the doubled-monoploid potato (DM). Inaddition, we performed RNA-seq on the 'Atlantic' (drought-sensitive cultivar, DS) and the 'Qingshu NO.9' (drought-tolerant cultivar, DT) in early flowering, full-blooming, along with flower-falling stages to detect genes that might be involved in response to drought stress. Finally, quantitative real-time PCR (qPCR) was carried out to analyze three candidate genes for their expression levels within 100 mM NaCl- and 10% PEG 6000 (w/v)-treated potato plantlets for a 24-h period. Furthermore, we analyzed the drought tolerance of StPUB25 transgenic plants and found that overexpression of StPUB25 significantly increased peroxidase (POD) activity, reduced ROS (reactive oxygen species) and MDA (malondialdehyde) accumulation compared with wild-type (WT) plants, and enhancing drought tolerance of the transgenic plants. CONCLUSION: In this study, three candidate genes related to drought tolerance in potato were excavated, and the function of StPUB25 under drought stress was verified. These results should provide valuable information to understand the potato StPUB gene family and investigate the molecular mechanisms of StPUBs regulating potato drought tolerance.


Asunto(s)
Arabidopsis , Solanum tuberosum , Ubiquitina-Proteína Ligasas/genética , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Resistencia a la Sequía , Filogenia , Sequías , Ubiquitinas/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
18.
Appl Microbiol Biotechnol ; 108(1): 70, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38194137

RESUMEN

Welan gum, a natural polysaccharide produced by Sphingomonas sp. ATCC 31555, has attracted considerable attention in the scientific community due to its desirable properties. However, challenges, such as high viscosity, residual bacterial cells, carotenoids, and protein complexation, hinder the widespread application of welan gum. In this study, we established a method for the extraction and purification of welan gum using a synergistic approach with lysozyme and alkaline protease. Lysozyme hydrolysis conditions were optimized by applying response surface methodology, and the best results for bacterial cell removal were achieved at 11 000 U/g, 44 °C, and pH 9 after 3 h of treatment. Subsequently, we evaluated protein hydrolysis through computer simulation and identified alkaline protease as the most suitable enzyme. Through experimental investigations, we found that the optimal conditions for alkaline protease hydrolysis were 7500 U/g, 50 °C, pH 10, and 600 rpm. These conditions resulted in a sugar recovery rate of 76.1%, carotenoid removal rate of 89.5%, bacterial removal rate of 95.2%, and protein removal rate of 87.3% after 3 h of hydrolysis. The purified welan gum exhibited high transparency and purity. Structural characterization and antioxidant activity evaluation revealed that enzymatically purified welan gum has potential application prospects. Our study provides valuable insights into the optimal method for the enzymatic extraction and purification of welan gum. Such a method is conducive to the development of the multiple potential applications of welan gum. KEY POINTS: • A novel process for the synergistic purification of welan gum using lysozyme and alkaline protease was established. • In silico virtual digestion was employed to select the purification enzyme. • Welan gum with high transparency and purity was obtained.


Asunto(s)
Proteínas Bacterianas , Muramidasa , Simulación por Computador , Carotenoides
19.
New Phytol ; 241(5): 2143-2157, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38173177

RESUMEN

The chilling stress induced by the global climate change harms rice production, especially at seedling and booting stage, which feed half the population of the world. Although there are key quantitative trait locus genes identified in the individual stage, few genes have been reported and functioned at both stages. Utilizing chromosome segment substitution lines (CSSLs) and a combination of map-based cloning and phenotypes of the mutants and overexpression lines, we identified the major gene Chilling-tolerance in Geng/japonica rice 3 (COG3) of q chilling-tolerance at the booting and seedling stage 11 (qCTBS11) conferred chilling tolerance at both seedling and booting stages. COG3 was significantly upregulated in Nipponbare under chilling treatment compared with its expression in 93-11. The loss-of-function mutants cog3 showed a reduced chilling tolerance. On the contrary, overexpression enhanced chilling tolerance. Genome evolution and genetic analysis suggested that COG3 may have undergone strong selection in temperate japonica during domestication. COG3, a putative calmodulin-binding protein, physically interacted with OsFtsH2 at chloroplast. In cog3-1, OsFtsH2-mediated D1 degradation was impaired under chilling treatment compared with wild-type. Our results suggest that COG3 is necessary for maintaining OsFtsH2 protease activity to regulate chilling tolerance at the booting and seedling stage.


Asunto(s)
Oryza , Oryza/genética , Sitios de Carácter Cuantitativo , Fenotipo , Genes de Plantas , Plantones/genética , Frío
20.
Int J Biol Sci ; 20(2): 585-605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169591

RESUMEN

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Sirtuinas , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Glutatión Transferasa , Lisina/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piroptosis , Sirtuinas/genética , Sirtuinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA