Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Data ; 11(1): 899, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-39154014

RESUMEN

Among over 2,000 species of mealybugs (Hemiptera: Pseudococcidae), only 13 genomes have been published so far, seriously limiting the researches on the phylogeny and adaptive evolution of this group. The continuous publication of mealybug genomes will significantly facilitate our exploration of the biological characteristics, detrimental attributes, and control strategies of the Pseudococcidae family. Jack Beardsley mealybug (Pseudococcus jackbeardsleyi) as one of the hazardous invasive pests, it could cause enormous losses to the fruit and vegetable industries worldwide. Herein, we combined Nanopore long-read, short-read Illumina and Hi-C sequencing, generating a high-quality chromosome-level genome assembly of P. jackbeardsleyi. The genome size was determined to be 334.818 Mb, which was assembled into 5 linkage groups with a N50 of 67.233 Mb. The BUSCO analysis demonstrated the completeness of the genome assembly and annotation are 95.7% and 92.8%, respectively. The developed high-quality genome will serve as an asset for delving into the genetic mechanisms underlying the invasiveness of P. jackbeardsleyi, thereby offering a crucial theoretical foundation for the prevention and management of Pseudococcidae pests.


Asunto(s)
Genoma de los Insectos , Hemípteros , Animales , Hemípteros/genética , Especies Introducidas , Tamaño del Genoma
2.
Lipids Health Dis ; 23(1): 248, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39143634

RESUMEN

BACKGROUND: Changes in the oxidative stress and lipid metabolism (OSLM) pathways play important roles in polycystic ovarian syndrome (PCOS) pathogenesis and development. Consequently, a systematic analysis of genes related to OSLM was conducted to identify molecular clusters and explore new biomarkers that are helpful for the diagnostic of PCOS. METHODS: Gene expression and clinical data from 22 PCOS women and 14 normal women were obtained from the GEO database (GSE34526, GSE95728, and GSE106724). Consensus clustering identified OSLM-related molecular clusters, and WGCNA revealed co-expression patterns. The immune microenvironment was quantitatively assessed utilizing the CIBERSORT algorithm. Multiple machine learning models and connectivity map analyses were subsequently applied to explore potential biomarkers for PCOS, and nomograms were employed to develop a predictive multigene model of PCOS. Finally, the OSLM status of PCOS and the hub genes expression profiles were preliminarily verified using TUNEL, qRT‒PCR, western blot, and IHC assays in a PCOS mouse model. RESULTS: 19 differential expression genes (DEGs) related to OSLM were identified. Based on 19 DEGs that were strongly influenced by OSLM, PCOS patients were stratified into two distinct clusters, designated Cluster 1 and Cluster 2. Distinct differences in the immune cell proportions existed in normal and two PCOS clusters. The random forest showed the best results, with the least cross-entropy and the utmost AUC (cross-entropy: 0.111 AUC: 0.960). Among the 19 OSLM-related genes, CXCR1, ACP5, CEACAM3, S1PR4, and TCF7 were identified by a Bayesian network and had a good fit with PCOS disease risk by the nomogram (AUC: 0.990 CI: 0.968-1.000). TUNEL assays revealed more severe DNA damage within the ovarian granule cells of PCOS mice than in those of normal mice (P < 0.001). The RNA and protein expression levels of the five hub genes were significantly elevated in PCOS mice, which was consistent with the results of the bioinformatics analyses. CONCLUSION: A novel predictive model was constructed for PCOS patients and five hub genes were identified as potential biomarkers to offer novel insights into clinical diagnostic strategies for PCOS.


Asunto(s)
Metabolismo de los Lípidos , Estrés Oxidativo , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/inmunología , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Femenino , Humanos , Metabolismo de los Lípidos/genética , Estrés Oxidativo/genética , Ratones , Animales , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Regulación de la Expresión Génica , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Nomogramas
3.
Artículo en Inglés | MEDLINE | ID: mdl-39174496

RESUMEN

BACKGROUND: Peutz-Jeghers syndrome (PJS), is a rare autosomal dominant hereditary disease characterized by an elevated risk of various cancers. Serine/Threonine Kinase 11 (STK11) gene is a major tumor suppressor crucial for immune evasion with and beyond tumorigenic cells. It has garnered increasing attention in the realm of oncology treatment, particularly in the context of immunotherapy development. OBJECTIVE: This study aimed to assess the suitability of polyps obtained from individuals with PJS, resulting from germline STK11 deficiency, for immunotherapy. Additionally, we seek to identify potential shared mechanisms related to immune evasion between PJS polyps and cancers. To achieve this, we examined PJS polyps alongside familial adenomatous polyposis (FAP) and sporadic polyps. METHODS: Polyps were compared among themselves and with either the paracancerous tissues or colon cancers. Pathological and gene expression profiling approaches were employed to characterize infiltrating immune cells and assess the expression of immune checkpoint genes. RESULTS: Our findings revealed that PJS polyps exhibited a closer resemblance to cancer tissues than other polyps in terms of their immune microenvironment. Notably, PJS polyps displayed heightened expression of the immune checkpoint gene CD80 and an accumulation of myeloid cells, particularly myeloid-derived suppressor cells (MDSCs). CONCLUSION: The findings suggest an immunobiological foundation for the increased cancer susceptibility in PJS patients, paving the way for potential immune therapy applications in this population. Furthermore, utilizing PJS as a model may facilitate the exploration of immune evasion mechanisms, benefiting both PJS and cancer patients.

4.
J Pain Res ; 17: 2551-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39132293

RESUMEN

Purpose: This study comprehensively describes and evaluates the correlation between gabapentinoids and all types of delirium. Methods: We used AERSMine to select all adverse reaction data from 2004 Q1 to the 2022 Q4 in the FDA Adverse Event Reporting System (FAERS) database, and delirium events reported by gabapentinoids drugs were included in this study. Collected and analyzed the clinical details of these reports. We have developed four models. Among the four models, reporting odds ratio (ROR) and proportional reporting ratio (PRR) were used to evaluate the potential association between and delirium. We undertook a subgroup analysis for the age and sex cohorts. Results: A total of 2950 reports of gabapentinoids-related delirium was collected. Excluding cases with a history of delirium (Model 2), opioid drugs (Model 3), and other adverse events related to gabapentinoids drugs (Model 4), pain cases with gabapentin drugs as the main suspected drug were selected. In model 1, the reporting rates of delirium at the delirium and delirium tremens levels were higher in the gabapentinoids group than in the non-gabapentinoids group (ROR 1.09(1.05,1.13); ROR 1.54(1.16,2.04)). In model 2.3 the delira and the delirium level were higher in the gabapentinoids group (ROR 1.42(1.29,1.56), ROR 1.44(1.31,1.59); ROR 1.43(1.30,1.58), ROR 1.46(1.33,1.61)). There is no difference in delirium levels in Model 4. Delirium levels were higher in the gabapentinoids group than in the non-gabapentinoids group in ≥65 years old. The delirium and deliria levels were higher in the male group than in the female group. Conclusion: The delirium adverse reactions of the gabapentinoids group were significantly higher than those of non-gabapentinoids group in the first three models. However, with the removal of confounding factors, there was no significant difference in this type of adverse reaction in Model 4. In elderly and male patients, the incidence of delirium with gabapentinoids was significantly increased.

5.
STAR Protoc ; 5(3): 103261, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39141518

RESUMEN

Electroporation temporarily enhances cell membrane permeability and promotes the absorption of external molecules. We have developed a device termed the rolling microneedle electrode array (RoMEA) that combines a densely arranged microneedle array of electrodes with rolling structures. Use RoMEA to create uniform skin micropores for efficient, low-damage transfection of nucleic acids over extended areas of the body. We describe in detail the design, fabrication, and assembly of the device and the application of in vivo electroporation of nucleic acids. For complete details on the use and execution of this protocol, please refer to Tongren Yang et al. 1.

6.
Small ; : e2400680, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126237

RESUMEN

Understanding the growth mechanisms of nanomaterials is crucial for effectively controlling their morphology which may affect their properties. Here, the growth process of indium nanoplates is studied using in situ liquid cell transmission electron microscopy. Quantitative analysis shows that the growth of indium nanoplate is limited by surface reaction. Besides, the growth process has two stages, which is different from that of other metal nanoplates reported previously. At the first stage, indium particles transform gradually from face-centered cubic to body-centered tetragonal (bct) structure as the seeds grow. At the second stage, the seeds grow faster than at the first stage and form indium triangular nanoplates. Indium triangular nanoplates have a bct structure with {011}-twin, which is found to form through kinetic reactions. In addition, the shape evolution of truncated triangle nanoplate with multiple twin planes is studied. The growth rate of truncated edge changes with the varied number of re-entrant grooves. The present work provides valuable insights into the growth mechanism of metal nanoplates with low-symmetric structure and the role of twin planes in the shape evolution of plate-like metal nanomaterials.

7.
Cell Death Discov ; 10(1): 352, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107264

RESUMEN

The HBV core protein (HBc) is an important viral protein of HBV that plays an indispensable role in the lifecycle of HBV, including capsid assembly and transport, reverse transcription and virus release. In recent years, evidence has shown that HBc may be involved in the malignant progression of HCC. Thus, HBc is an attractive target for antiviral agents and provides a new strategy for the treatment of HBV-related HCC. Here, we identified a novel anti-HBc compound-colchicine, an alkaloid compound-that promoted selective autophagic degradation of HBc through the AMPK/mTOR/ULK1 signalling pathway. We further confirmed that colchicine promoted the selective autophagy of HBc by enhancing the binding of HBc to the autophagy receptor p62. Finally, we evaluated the effects of colchicine on HBV replication and HBc-mediated HCC metastasis in vitro and in vivo. Our research indicated that the inhibitory effects of colchicine on HBV and HBV-related HCC depend on the selective autophagic degradation of HBc. Thus, colchicine is not only a promising therapeutic strategy for chronic hepatitis B but also a new treatment for HBV-related HCC.

8.
iScience ; 27(6): 109888, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38947517

RESUMEN

Stem cell therapy for intrauterine adhesions (IUAs) has been widely used in clinical treatment. However, intravenous injection lacks sufficient targeting capabilities, while in situ injection poses challenges in ensuring the effective survival of stem cells. Furthermore, the mechanism underlying the interaction between stem cells and endometrial cells in vivo remains poorly understood, and there is a lack of suitable in vitro models for studying these problems. Here, we designed an extracellular matrix (ECM)-adhesion mimic hydrogel for intrauterine administration, which was more effective than direct injection in treating IUAs. Additionally, we analyzed the epithelial-mesenchymal transition (EMT) and confirmed that the activation of endometrial epithelial stem cells is pivotal. Our findings demonstrated that umbilical cord mesenchymal stem cells (UC-MSCs) secrete WNT7A to activate endometrial epithelial stem cells, thereby accelerating regeneration of the endometrial epithelium. Concurrently, under transforming growth factor alpha (TGFA) stimulation secreted by the EMT epithelium, UC-MSCs upregulate E-cadherin while partially implanting into the endometrial epithelium.

9.
Immunobiology ; 229(5): 152836, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39018675

RESUMEN

BACKGROUND: Dysregulation of RNA guanine-7 methyltransferase (RNMT) plays a crucial role in the tumor progression and immune responses. However, the detailed role of RNMT in pan-cancer is still unknown. METHODS: Bulk transcriptomic data of pan-cancer were obtained from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases. Single-cell transcriptomic and proteomics data of lung squamous cell carcinoma (LUSC) were analyzed in the Tumor Immune Single-cell Hub 2 (TISCH2) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) databases, respectively. The correlation between RNMT expression and cancer prognosis was analyzed by Cox proportional hazards regression and Kaplan-Meier analyses. The correlation of RNMT expression with common immunoregulators, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and DNA methyltransferase (DNMT) was analyzed. Additionally, the correlation between RNMT expression and immune infiltration level was evaluated. A total of 1287 machine learning combinations were used to construct prognostic models for LUSC. qRT-PCR and Western blot were used to validate the bioinformatics findings of RNMT upregulation in LUSC. RESULTS: RNMT was widely expressed across different cancers, with significant correlation to prognosis in cancers such as kidney chromophobe (KICH) (p = 0.0033, HR = 7.12), liver hepatocellular carcinoma (LIHC) (p = 0.01, HR = 1.41), and others. Notably, RNMT participates in the regulation of the tumor microenvironment. RNMT expression positively correlated with immune cell expression (Spearman's rank correlation, p < 0.05). Moreover, RNMT expression was strongly associated with immunoregulators, TMB, MSI, MMR, and DNMT in most cancer types. Notably, RNMT expression displayed excellent prognostic and immunological performance in LUSC. The expression of RNMT was mainly enriched in B cells of LUSC tissues. qRT-PCR and Western blot verified the high expression of RNMT in LUSC. CONCLUSION: RNMT expression widely correlated with prognosis and immune infiltration in various tumors, especially LUSC. The RNMT detection may provide a new idea for future tumor immune studies and treatment strategies.

10.
World Neurosurg ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38996962

RESUMEN

OBJECTIVE: Patients with moderate traumatic brain injury (TBI) are under the threat of intracranial hypertension (IHT). However, it is unclear which moderate TBI patient will develop IHT and should receive intracranial pressure (ICP)-lowering treatment or invasive ICP monitoring after admission. The purpose of the present study was to develop and validate a prediction model that estimates the risk of IHT in moderate TBI patients. METHODS: Baseline data collected on admission of 296 moderate TBI patients with Glasgow Coma Scale (GCS) score of 9-11 was collected and analyzed. Multi-variable logistic regression modeling with backward stepwise elimination was used to develop a prediction model for IHT. The discrimination efficacy, calibration efficacy, and clinical utility of the prediction model were evaluated. Finally, the prediction model was validated in a separate cohort of 122 patients from 3 hospitals. RESULTS: Four independent prognostic factors for IHT were identified: GCS score, Marshall head computed tomography score, injury severity score and location of contusion. The C-statistic of the prediction model in internal validation was 84.30% (95% confidence interval [CI]: 0.794-0.892). The area under the curve for the prediction model in external validation was 82.80% (95% CI: 0.747∼0.909). CONCLUSIONS: A prediction model based on baseline parameters was found to be highly sensitive in distinguishing moderate TBI patients with GCS score of 9-11 who would suffer IHT. The high discriminative ability of the prediction model supports its use in identifying moderate TBI patients with GCS score of 9-11 who need ICP-lowering therapy or invasive ICP monitoring.

11.
FASEB J ; 38(14): e23783, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037571

RESUMEN

Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a phosphorylated protein. High SPP1 expression levels have been detected in multiple cancers and are associated with poor prognosis and reduced survival rates. However, only a few pan-cancer analyses have targeted SPP1. We conducted a comprehensive analysis using multiple public databases, including TIMER and TCGA, to investigate the expression levels of SPP1 in 33 different tumor types. In addition, we verified the effect of SPP1 on osteosarcoma. To assess the impact of SPP1 on patient outcomes, we employed univariate Cox regression and Kaplan-Meier survival analyses to analyze overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in these tumor patients. We also explored SPP1 gene alterations in various tumor tissues using cBioPortal. We then examined the relationship between SPP1 and clinical characteristics, TME, immune regulatory genes, immune checkpoints, TMB, and MSI using R language. In addition, we used GSEA to investigate the molecular mechanisms underlying the role of SPP1. Bioinformatics analysis indicated that SPP1 was upregulated in 17 tumors. Overexpression of SPP1 results in poor OS, DSS, and PFI in CESC, ESCA, GBM, LGG, LIHC, PAAD, PRAD, and skin cutaneous melanoma. SPP1 expression was positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI, and drug sensitivity in certain cancers. We found that high expression of SPP1 in osteosarcoma was related to drug resistance and metastasis and further demonstrated that SPP1 can stimulate osteosarcoma cell proliferation via CCND1 by activating the PI3K/Akt pathway. These findings strongly suggest that SPP1 is a potential prognostic marker and novel target for cancer immunotherapy.


Asunto(s)
Biomarcadores de Tumor , Osteopontina , Osteosarcoma , Humanos , Osteosarcoma/inmunología , Osteosarcoma/mortalidad , Osteosarcoma/genética , Osteosarcoma/metabolismo , Osteosarcoma/patología , Osteopontina/genética , Osteopontina/metabolismo , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Pronóstico , Neoplasias Óseas/inmunología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/mortalidad , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
12.
J Control Release ; 373: 640-651, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39084467

RESUMEN

Bone metastasis, a prevalent occurrence in primary malignant tumors, is often associated with a grim prognosis. The bone microenvironment comprises various coexisting cell types, working together in a coordinated manner. This dynamic microenvironment plays a pivotal role in the initiation and progression of bone metastases. While cancer therapies have made advancements, the available options for addressing bone metastases remain insufficient. The advent of nanotechnology has ushered in a new era for managing and preventing bone metastases because of the physicochemical and adaptable advantages of nanoplatforms. In this review, we make an introduction of the underlying mechanisms and the current clinical therapies of bone metastases, highlighting the advances of intelligent nanosystems that can stimulate vascular regeneration, promote bone regeneration, eliminate tumor cells, minimize bone damage, and expedite bone healing. The innovation surrounding bone-targeting nanoplatforms presents a fresh approach to the theranostics of bone metastases.

13.
BMC Med Educ ; 24(1): 644, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849847

RESUMEN

BACKGROUND: The rapid growth of artificial intelligence (AI) technologies has been driven by the latest advances in computing power. Although, there exists a dearth of research on the application of AI in medical education. METHODS: this study is based on the TAM-ISSM-UTAUT model and introduces STARA awareness and chilling effect as moderating variables. A total of 657 valid questionnaires were collected from students of a medical university in Dalian, China, and data were statistically described using SPSS version 26, Amos 3.0 software was used to validate the research model, as well as moderated effects analysis using Process (3.3.1) software, and Origin (2021) software. RESULTS: The findings reveal that both information quality and perceived usefulness are pivotal factors that positively influence the willingness to use AI products. It also uncovers the moderating influence of the chilling effect and STARA awareness. CONCLUSIONS: This suggests that enhancing information quality can be a key strategy to encourage the widespread use of AI products. Furthermore, this investigation offers valuable insights into the intersection of medical education and AI use from the standpoint of medical students. This research may prove to be pertinent in shaping the promotion of Medical Education Intelligence in the future.


Asunto(s)
Inteligencia Artificial , Educación Médica , Estudiantes de Medicina , Humanos , Estudiantes de Medicina/psicología , Encuestas y Cuestionarios , Masculino , Femenino , China , Adulto Joven , Concienciación
14.
J Nanobiotechnology ; 22(1): 361, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38910236

RESUMEN

Recently, environmental temperature has been shown to regulate bone homeostasis. However, the mechanisms by which cold exposure affects bone mass remain unclear. In our present study, we observed that exposure to cold temperature (CT) decreased bone mass and quality in mice. Furthermore, a transplant of exosomes derived from the plasma of mice exposed to cold temperature (CT-EXO) can also impair the osteogenic differentiation of BMSCs and decrease bone mass by inhibiting autophagic activity. Rapamycin, a potent inducer of autophagy, can reverse cold exposure or CT-EXO-induced bone loss. Microarray sequencing revealed that cold exposure increases the miR-25-3p level in CT-EXO. Mechanistic studies showed that miR-25-3p can inhibit the osteogenic differentiation and autophagic activity of BMSCs. It is shown that inhibition of exosomes release or downregulation of miR-25-3p level can suppress CT-induced bone loss. This study identifies that CT-EXO mediates CT-induced osteoporotic effects through miR-25-3p by inhibiting autophagy via targeting SATB2, presenting a novel mechanism underlying the effect of cold temperature on bone mass.


Asunto(s)
Autofagia , Frío , Exosomas , Ratones Endogámicos C57BL , MicroARNs , Osteogénesis , Animales , Autofagia/efectos de los fármacos , Ratones , Exosomas/metabolismo , MicroARNs/metabolismo , MicroARNs/genética , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Osteoporosis/patología , Diferenciación Celular/efectos de los fármacos , Huesos/metabolismo , Femenino , Densidad Ósea , Sirolimus/farmacología
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124643, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-38901233

RESUMEN

Herein, two simple fluorescent signal-on sensing strategies for detecting lead ions (Pb2+) were established based on structure-switching aptamer probes and exonuclease-assisted signal amplification strategies. Two hairpin-structure fluorescent probes with blunt-ended stem arms were designed by extending the base sequence of Pb2+ aptamer (PS2.M) and labelling the probes with FAM (in probe 1) and 2-aminopurine (2-AP) (in probe 2), respectively. In method 1, graphene oxide (GO) was added to adsorb probe 1 and quench the fluorescence emission of FAM to achieve low fluorescent background. In method 2, fluorescent 2-AP molecule inserted into the double-stranded DNA of probe 2 was quenched as a result of base stacking interactions, leading to a simplified, quencher-free approach. The addition of Pb2+ can induce the probes to transform into G-quadruplex structures, exposing single DNA strands at the 3' end (the extended sequences). This exposure enables the activation of exonuclease I (Exo I) on the probes, leading to the cleavage effect and subsequent release of free bases and fluorophores, thereby resulting in amplified fluorescence signals. The two proposed methods exhibit good specificity and sensitivity, with detection limits of 0.327 nM and 0.049 nM Pb2+ for method 1 and method 2, respectively, and have been successfully applied to detect Pb2+ in river water and fish samples. Both detection methods employ the structure-switching aptamer probes and can be completed in two or three steps without the need for complex analytical instruments. Therefore, they have a broad prospect in the sensitive and simple detection of lead ion contamination in food and environmental samples.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Exodesoxirribonucleasas , Colorantes Fluorescentes , Plomo , Límite de Detección , Espectrometría de Fluorescencia , Plomo/análisis , Aptámeros de Nucleótidos/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/química , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos , Técnicas Biosensibles/métodos , Sondas de ADN/química , Contaminantes Químicos del Agua/análisis , Animales , Iones/análisis , Grafito/química
16.
Opt Express ; 32(11): 18997-19005, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38859044

RESUMEN

In this work, a double-end diffusion bonded Nd:YVO4 self-Raman laser was designed to drive an intracavity, noncritically-phase-matched KTiOAsO4 (KTA) optical parametric oscillator (OPO). Both conversion efficiency and output power at 1.7 µm (the wavelength of the OPO signal field) were improved by effectively reducing the thermal lens effect and increasing the effective length of self-Raman medium. At an incident pump power of 15.4 W, the output power for 1742 nm output laser reached 2.16 W with a conversion efficiency of 14%, and the output having a pulse width of 10.5 ns and a pulse repetition frequency of 90 kHz. The competition between the OPO and cascaded Raman laser was observed when the incident pump power was above 12.4 W. The results highlight that in order to improve output power at 1742 nm, it is critical that both the cascaded, second-Stokes field at 1313 nm and the signal field generated at 1534 nm from the 1064 nm field driving the KTA-OPO be minimized, if not completely suppressed. This laser system combining the processes of stimulated Raman scattering and optical parametric oscillation for the generation of laser emission at 1742 nm may find significant application across a broad range of fields including biological engineering, laser therapy, optical coherence tomography and for the generation of mid-infrared laser wavelengths.

17.
Phenomics ; 4(2): 171-186, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38884054

RESUMEN

Sarcoma is a complex and heterogeneous cancer that has been difficult to study in vitro. While two-dimensional (2D) cell cultures and mouse models have been the dominant research tools, three-dimensional (3D) culture systems such as organoids have emerged as promising alternatives. In this review, we discuss recent developments in sarcoma organoid culture, with a focus on their potential as tools for drug screening and biobanking. We also highlight the ways in which sarcoma organoids have been used to investigate the mechanisms of gene regulation, drug resistance, metastasis, and immune interactions. Sarcoma organoids have shown to retain characteristics of in vivo biology within an in vitro system, making them a more representative model for sarcoma research. Our review suggests that sarcoma organoids offer a potential path forward for translational research in this field and may provide a platform for developing personalized therapies for sarcoma patients.

18.
Mar Drugs ; 22(6)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38921594

RESUMEN

Endothelial hyperpermeability is pivotal in sepsis-associated multi-organ dysfunction. Increased von Willebrand factor (vWF) plasma levels, stemming from activated platelets and endothelium injury during sepsis, can bind to integrin αvß3, exacerbating endothelial permeability. Hence, targeting this pathway presents a potential therapeutic avenue for sepsis. Recently, we identified isaridin E (ISE), a marine-derived fungal cyclohexadepsipeptide, as a promising antiplatelet and antithrombotic agent with a low bleeding risk. ISE's influence on septic mortality and sepsis-induced lung injury in a mouse model of sepsis, induced by caecal ligation and puncture, is investigated in this study. ISE dose-dependently improved survival rates, mitigating lung injury, thrombocytopenia, pulmonary endothelial permeability, and vascular inflammation in the mouse model. ISE markedly curtailed vWF release from activated platelets in septic mice by suppressing vesicle-associated membrane protein 8 and soluble N-ethylmaleide-sensitive factor attachment protein 23 overexpression. Moreover, ISE inhibited healthy human platelet adhesion to cultured lipopolysaccharide (LPS)-stimulated human umbilical vein endothelial cells (HUVECs), thereby significantly decreasing vWF secretion and endothelial hyperpermeability. Using cilengitide, a selective integrin αvß3 inhibitor, it was found that ISE can improve endothelial hyperpermeability by inhibiting vWF binding to αvß3. Activation of the integrin αvß3-FAK/Src pathway likely underlies vWF-induced endothelial dysfunction in sepsis. In conclusion, ISE protects against sepsis by inhibiting endothelial hyperpermeability and platelet-endothelium interactions.


Asunto(s)
Plaquetas , Células Endoteliales de la Vena Umbilical Humana , Sepsis , Factor de von Willebrand , Animales , Sepsis/tratamiento farmacológico , Factor de von Willebrand/metabolismo , Humanos , Ratones , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Masculino , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inhibidores , Permeabilidad Capilar/efectos de los fármacos
19.
Cancer Res ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900943

RESUMEN

Chemoresistance is one of the major causes of poor prognosis in osteosarcoma. Alternative therapeutic strategies for osteosarcoma are limited, indicating that increasing sensitivity to currently used chemotherapies could be an effective approach to improve patient outcomes. Using a kinome-wide CRISPR screen, we identified PRKDC as a critical determinant of doxorubicin (DOX) sensitivity in osteosarcoma. Analysis of clinical samples demonstrated that PRKDC was hyperactivated in osteosarcoma, and functional experiments showed that loss of PRKDC significantly increased sensitivity of osteosarcoma to DOX. Mechanistically, PRKDC recruited and bound GDE2 to enhance the stability of GNAS. The elevated GNAS protein levels subsequently activated AKT phosphorylation and conferred resistance to DOX. The PRKDC inhibitor AZD7648 and DOX synergized and strongly suppressed the growth of osteosarcoma in mouse xenograft models and human organoids. In conclusion, the PRKDC-GDE2-GNAS-AKT regulatory axis suppresses DOX sensitivity and comprises targetable candidates for improving the efficacy of chemotherapy in osteosarcoma.

20.
J Immunol ; 213(3): 347-361, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38847616

RESUMEN

The cyclic GMP-AMP synthase (cGAS)-stimulator of IFN genes (STING) pathway is instrumental to antitumor immunity, yet the underlying molecular and cellular mechanisms are complex and still unfolding. A new paradigm suggests that cancer cells' cGAS-synthesized cGAMP can be transferred to tumor-infiltrating immune cells, eliciting STING-dependent IFN-ß response for antitumor immunity. Nevertheless, how the tumor microenvironment may shape this process remains unclear. In this study, we found that extracellular ATP, an immune regulatory molecule widely present in the tumor microenvironment, can potentiate cGAMP transfer, thereby boosting the STING signaling and IFN-ß response in murine macrophages and fibroblasts. Notably, genetic ablation or chemical inhibition of murine volume-regulation anion channel LRRC8/volume-regulated anion channel (VRAC), a recently identified cGAMP transporter, abolished ATP-potentiated cGAMP transfer and STING-dependent IFN-ß response, revealing a crucial role of LRRC8/VRAC in the cross-talk of extracellular ATP and cGAMP. Mechanistically, ATP activation of the P2X family receptors triggered Ca2+ influx and K+ efflux, promoting reactive oxygen species production. Moreover, ATP-evoked K+ efflux alleviated the phosphorylation of VRAC's obligate subunit LRRC8A/SWELL1 on S174. Mutagenesis studies indicated that the phosphorylation of S174 on LRRC8A could act as a checkpoint for VRAC in the steady state and a rheostat of ATP responsiveness. In an MC38-transplanted tumor model, systemically blocking CD39 and ENPP1, hydroxylases of extracellular ATP and cGAMP, respectively, elevated antitumor NK, NKT, and CD8+ T cell responses and restrained tumor growth in mice. Altogether, this study establishes a crucial role of ATP in facilitating LRRC8/VRAC transport cGAMP in the tumor microenvironment and provides new insight into harnessing cGAMP transfer for antitumor immunity.


Asunto(s)
Adenosina Trifosfato , Proteínas de la Membrana , Nucleótidos Cíclicos , Microambiente Tumoral , Animales , Nucleótidos Cíclicos/metabolismo , Ratones , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/inmunología , Microambiente Tumoral/inmunología , Interferón beta/metabolismo , Interferón beta/inmunología , Ratones Endogámicos C57BL , Humanos , Transducción de Señal/inmunología , Ratones Noqueados , Línea Celular Tumoral , Cationes/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Nucleotidiltransferasas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA