Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Rep ; 43(3): 66, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341387

RESUMEN

KEY MESSAGE: We used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud differentiation stages and overexpression of CpFPA1 in Arabidopsis resulted in earlier flowering. Wintersweet (Chimonanthus praecox), a rare winter-flowering woody plant, is well known for its unique blooming time, fragrance and long flowering period. However, the molecular mechanism of flowering in C. praecox remains poorly unclear. In this study, we used transcriptomic and proteomic association analysis to reveal the critical genes/proteins at three key flower bud (FB) differentiation stages (FB.Apr, FB.May and FB.Nov) in C. praecox. The results showed that a total of 952 differential expressed genes (DEGs) and 40 differential expressed proteins (DEPs) were identified. Gene ontology (GO) enrichment revealed that DEGs in FB.Apr/FB.May comparison group were mainly involved in metabolic of biological process, cell and cell part of cellular component and catalytic activity of molecular function. In the EuKaryotic Orthologous Groups (KOG) functional classification, DEPs were predicted mainly in the function of general function prediction only (KOG0118), post-translational modification, protein turnover and chaperones. The autonomous pathway genes play an essential role in the floral induction. Based on transcriptome and proteome correlation analysis, six candidate genes associated with the autonomous pathway were identified, including FPA1, FPA2a, FPA2b, FCA, FLK, FY. Furthermore, CpFPA1 was isolated and functionally characterized, and ectopic expression of CpFPA1 in Arabidopsis Columbia (Col-0) resulted in earlier flowering. These data could contribute to understand the function of CpFPA1 for floral induction and provide information for further research on the molecular mechanisms of flowering in wintersweet.


Asunto(s)
Arabidopsis , Transcriptoma , Transcriptoma/genética , Proteoma/genética , Proteoma/metabolismo , Flores/genética , Flores/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteómica , Regulación de la Expresión Génica de las Plantas
2.
Plant Physiol Biochem ; 196: 893-902, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36878163

RESUMEN

Wintersweet (Chimonanthus praecox), a Magnoliidae tree, is popular for its unique fragrant aroma and winter-flowering characteristics, which is widely used in gardens and pots, or for cut flowers, essential oil, medicine, and edible products. MIKCC-type of MADS-box gene family play a crucial role in plant growth and development process, particularly in controlling flowering time and floral organ development. Although MIKCC-type genes have been well studied in many plant species, the study of MIKCC-type is poorly in C. praecox. In this study, we identified 30 MIKCC-type genes of C. praecox on gene structures, chromosomal location, conserved motifs, phylogenetic relationships based on bioinformatics tools. Phylogenetic relationships analysis with Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa Japonica), Amborella trichopoda and tomato (Solanum lycopersicum) showed that CpMIKCCs were divided into 13 subclasses, each subclass containing 1 to 4 MIKCC-type genes. The Flowering locus C (FLC) subfamily was absent in C. praecox genome. CpMIKCCs were randomly distributed into eleven chromosomes of C. praecox. Besides, the quantitative RT-PCR (qPCR) was performed for the expression pattern of several MIKCC-type genes (CpFUL, CpSEPs and CpAGL6s) in seven bud differentiation stages and indicated that they were involved in dormancy breaking and bud formation. Additionally, overexpression of CpFUL in Arabidopsis Columbia-0 (Col-0) resulted in early flowering and showed difference in floral organs, leaves and fruits. These data could provide conducive information for understanding the roles of MIKCC-type genes in the floral development and lay a foundation for screening candidate genes to validate function.


Asunto(s)
Arabidopsis , Proteínas de Dominio MADS , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Filogenia , Arabidopsis/genética , Flores/metabolismo , Genoma de Planta , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Int J Mol Sci ; 24(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36835618

RESUMEN

Chimonanthus praecox (wintersweet) is highly valued ornamentally and economically. Floral bud dormancy is an important biological characteristic in the life cycle of wintersweet, and a certain period of chilling accumulation is necessary for breaking floral bud dormancy. Understanding the mechanism of floral bud dormancy release is essential for developing measures against the effects of global warming. miRNAs play important roles in low-temperature regulation of flower bud dormancy through mechanisms that are unclear. In this study, small RNA and degradome sequencing were performed for wintersweet floral buds in dormancy and break stages for the first time. Small RNA sequencing identified 862 known and 402 novel miRNAs; 23 differentially expressed miRNAs (10 known and 13 novel) were screened via comparative analysis of breaking and other dormant floral bud samples. Degradome sequencing identified 1707 target genes of 21 differentially expressed miRNAs. The annotations of the predicted target genes showed that these miRNAs were mainly involved in the regulation of phytohormone metabolism and signal transduction, epigenetic modification, transcription factors, amino acid metabolism, and stress response, etc., during the dormancy release of wintersweet floral buds. These data provide an important foundation for further research on the mechanism of floral bud dormancy in wintersweet.


Asunto(s)
MicroARNs , MicroARNs/genética , Flores/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
4.
Molecules ; 27(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36500703

RESUMEN

Guyinjian (GYJ) is an ancient classic formula of traditional Chinese medicine used for the treatment of liver and kidney yin deficiency; it was derived from the book "Jing Yue Quan Shu" in the Ming Dynasty. Modern clinical observation experiments have shown that GYJ has a definite therapeutic effect on the treatment of gynecological diseases such as kidney deficiency type oligomenorrhea, climacteric syndrome, intermenstrual bleeding, pubertal metrorrhagia, etc. However, the lack of GYJ quality control studies has greatly limited the development of its wider clinical application. In this study, a validated UPLC-MS/MS method was developed successfully for the first time and used to quantify fourteen compounds in GYJ samples with good specificity, linearity (r = 0.9960-0.9999), precision (RSD% ≤ 3.18%), stability (RSD% ≤ 2.22%) and accuracy (recovery test within 88.64-107.43%, RSD% at 2.82-6.22%). Simultaneously, the determination results of 15 batches of GYJ samples were analyzed by multivariate statistical methods, and it was found that the compounds have a greater influence on batch-to-batch stability, mainly Rehmannioside D, Loganin, Morroniside, Ginsenoside Re, and 3',6-Disinapoylsucrose. The proposed new method has the advantages of high sensitivity, high selectivity, and rapid analysis, which provides a reference for the GYJ quality control study.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/análisis , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
5.
Front Pharmacol ; 13: 1009668, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545309

RESUMEN

Ciwujia Tablets (CWT) are produced by concentrating and drying the extract solution of the dried rhizome of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim [Araliaceae; E. senticosus radix et rhizoma]. Besides, CWT is included in the 2020 edition of Chinese Pharmacopoeia and is widely used in the treatment of insomnia. It mainly contains eleutheroside B, eleutheroside E, isofraxidin, eleutheroside C, ciwujiatone, and chlorogenic acid, as well as other chemical components. Although the clinical efficacy of CWT in treating insomnia has been confirmed, its functions and pharmacological effects have not been systematically evaluated and its mechanism of action in the treatment of insomnia remains unclear. Therefore, in this study, behavioral, energy metabolism, and metabonomics methods were applied to systematically evaluate the effect of CWT on insomnia. Additionally, urine metabonomics based on UPLC-Q-TOF-MS/MS were utilized to identify potential endogenous biomarkers of insomnia, detect the various changes before and after CWT treatment, explore the metabolic pathway and potential target of CWT, and reveal its pharmacological mechanism. Results revealed that CWT increased inhibitory neurotransmitter (5-HT and GABA) content and reduced the content of excitatory neurotransmitters (DA and NE). Moreover, CWT enhanced autonomous behavioral activity, stabilized emotions, and promoted the return of daily basic metabolic indexes of insomniac rats to normal levels. The urine metabolomics experiment identified 28 potential endogenous biomarkers, such as allysine, 7,8-dihydroneopterin, 5-phosphonooxy-L-lysine, and N-acetylserotonin. After CWT treatment, the content of 22 biomarkers returned to normal levels. The representative markers included N-acetylserotonin, serotonin, N-methyltryptamine, and 6-hydroxymelatonin. Additionally, the metabolic pathways in rats were significantly reversed, such as tryptophan metabolism, folate biosynthesis, phenylalanine metabolism, and tyrosine metabolism. Ultimately, it is concluded that CWT regulated tryptophan metabolism, folate biosynthesis, phenylalanine metabolism, and other metabolic levels in the body. This drug has been confirmed to be effective in the treatment of insomnia by regulating the content of serotonin, 6-hydroxymelatonin, N-acetylserotonin, and N-methyltryptamine to a stable and normal level in tryptophan metabolism.

6.
Front Pharmacol ; 13: 990996, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36110515

RESUMEN

Insomnia, whether chronic or intermittent, is a common central nervous system disease. Ciwujia Tablet (CWT) is a well-known traditional Chinese medicine (TCM) made from the extract of Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. This medication is commonly used for treating insomnia in China, but the lack of in-depth research focused on the chemical ingredients of CWT creates a gap in knowledge regarding its effective constituents against insomnia. Considering that the therapeutic material basis, targets, and pathways related to this drug have not been fully investigated by scholars in the field, the focus of this study is on identifying the chemical ingredients or structural characteristics of CWT by the UPLC-Q-TOF-MS/MS technique. Besides, concepts of network pharmacology were also used to investigate the targets and pathways of CWT. An insomnia rat model was established by intraperitoneal injection of p-chlorophenylalanine, and the results were verified through various experiments. A total of 46 ingredients were identified in CWT, such as eleutheroside B, eleutheroside E, isofraxidin, and chlorogenic acid. Among them, 17 ingredients with good solubility, favorable gastrointestinal absorption, and high bioavailability were selected for network pharmacological analysis. It was concluded that CWT participated in the regulation of neurotransmitter levels, modulation of ion transport, neurotransmitter receptor activity, synaptic transmission, dopaminergic transmission and other essential processes. Results from the animal experiments showed that CWT can increase the content of inhibitory neurotransmitters 5-HT and GABA in the brain, reduce the synthesis of excitatory escalating transmitters DA and NE, shorten the sleep latency and prolong the sleep duration of insomnia rats. Furthermore, CWT could significantly alleviate the symptoms of insomnia in model rats. Identifying the chemical ingredients of CWT in this experiment is of great significance for exploring its potential curative effects, which provides a solid basis for further understanding the therapeutic value of this medication.

7.
Plant Cell Physiol ; 62(5): 839-857, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33768247

RESUMEN

miR156/157 plays multiple pivotal roles during plant growth and development. In this study, we identified 11 miR156- and 5 miR157-encoding loci from the genome of Petunia axillaris and Petunia inflata, designated as PaMIR0156/157s and PiMIR0156/157s, respectively. Real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated that PhmiR156/157 was expressed predominantly in cotyledons, germinating seeds, flower buds, young fruits and seedlings. PhmiR156/157 levels declined in shoot apical buds and leaves of petunia before flowering as the plant ages; moreover, the temporal expression patterns of most miR156/157-targeted PhSPLs were complementary to that of PhmiR156/157. Ectopic expression of PhMIR0157a in Arabidopsis and petunia resulted in delayed flowering, dwarf plant stature, increased branches and reduced organ size. However, PhMIR0156f-overexpressing Arabidopsis and petunia plants showed only delayed flowering. In addition, downregulation of PhmiR156/157 level by overexpressing STTM156/157 led to taller plants with less branches, longer internodes and precocious flowering. qRT-PCR analysis indicated that PhmiR156/157 modulates these traits mainly by downregulating their PhSPL targets and subsequently decreasing the expression of flowering regulatory genes. Our results demonstrate that the PhmiR156/157-PhSPL module has conserved but also divergent functions in growth and development, which will help us decipher the genetic basis for the improvement of flower transition, plant architecture and organ development in petunia.


Asunto(s)
Flores/fisiología , Regulación de la Expresión Génica de las Plantas , MicroARNs/genética , Petunia/fisiología , Arabidopsis/genética , Arabidopsis/fisiología , Flores/anatomía & histología , Flores/genética , Tamaño de los Órganos/genética , Petunia/genética , Fenotipo , Filogenia , Plantas Modificadas Genéticamente , Factores de Tiempo
8.
Hortic Res ; 7(1): 198, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328461

RESUMEN

Chilling has a critical role in the growth and development of perennial plants. The chilling requirement (CR) for dormancy breaking largely depends on the species. However, global warming is expected to negatively affect chilling accumulation and dormancy release in a wide range of perennial plants. Here, we used Chimonanthus praecox as a model to investigate the CR for dormancy breaking under natural and artificial conditions. We determined the minimum CR (570 chill units, CU) needed for chilling-induced dormancy breaking and analyzed the transcriptomes and proteomes of flowering and non-flowering flower buds (FBs, anther and ovary differentiation completed) with different CRs. The concentrations of ABA and GA3 in the FBs were also determined using HPLC. The results indicate that chilling induced an upregulation of ABA levels and significant downregulation of SHORT VEGETATIVE PHASE (SVP) and FLOWERING LOCUS T (FT) homologs at the transcript level in FBs when the accumulated CR reached 570 CU (IB570) compared to FBs in November (FB.Nov, CK) and nF16 (non-flowering FBs after treatment at 16 °C for -300 CU), which suggested that dormancy breaking of FBs could be regulated by the ABA-mediated SVP-FT module. Overexpression in Arabidopsis was used to confirm the function of candidate genes, and early flowering was induced in 35S::CpFT1 transgenic lines. Our data provide insight into the minimum CR (570 CU) needed for chilling-induced dormancy breaking and its underlying regulatory mechanism in C. praecox, which provides a new tool for the artificial regulation of flowering time and a rich gene resource for controlling chilling-induced blooming.

9.
Int J Mol Sci ; 20(21)2019 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-31731556

RESUMEN

The WRKY transcription factors are one of the most important plant-specific transcription factors and play vital roles in various biological processes. However, the functions of WRKY genes in wintersweet (Chimonanthus praecox) are still unknown. In this report, a group IIc WRKY gene, CpWRKY71, was isolated from wintersweet. CpWRKY71 was localized to the nucleus and possessed transcriptional activation activity. qRT-PCR (quantitative real-time PCR) analysis showed that CpWRKY71 was expressed in all tissues tested, with higher expression in flowers and senescing leaves. During the flower development, the highest expression was detected in the early-withering stage, an obvious expression of CpWRKY71 was also observed in the flower primordia differentiation and the bloom stage. Meanwhile, the expression of CpWRKY71 was influenced by various abiotic stress and hormone treatments. The expression patterns of the CpWRKY71 gene were further confirmed in CpWRKY71pro:GUS (ß-glucuronidase) plants. Heterologous overexpression of CpWRKY71 in Arabidopsis caused early flowering. Consistent with the early flowering phenotype, the expression of floral pathway integrators and floral meristem identity (FMI) genes were significantly up-regulated in transgenic plants. In addition, we also observed that the transgenic plants of CpWRKY71 exhibited precocious leaf senescence. In conclusion, our results suggested that CpWRKY71 may be involved in the regulation of flowering and leaf senescence in Arabidopsis. Our study provides a foundation for further characterization of CpWRKY genes function in wintersweet, and also enrich our knowledge of molecular mechanism about flowering and senescence in wintersweet.


Asunto(s)
Arabidopsis , Calycanthaceae/genética , Senescencia Celular/genética , Flores , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta , Proteínas de Plantas , Plantas Modificadas Genéticamente , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
10.
Int J Mol Sci ; 19(10)2018 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-30360370

RESUMEN

Wintersweet (Chimonanthus praecox) is a well-known traditional fragrant plant and a winter-flowering deciduous shrub that originated in China. The five different developmental stages of wintersweet, namely, flower-bud period (FB), displayed petal stage (DP), open flower stage (OF), later blooming period (LB), and wilting period (WP) were studied using a scanning electron microscope (SEM) to determine the distribution characteristics of aroma-emitting nectaries. Results showed that the floral scent was probably emitted from nectaries distributed on the adaxial side of the innermost and middle petals, but almost none on the abaxial side. The nectaries in different developmental periods on the petals differ in numbers, sizes, and characteristics. Although the distribution of nectaries on different rounds of petals showed a diverse pattern at the same developmental periods, that of the nectaries on the same round of petals showed some of regularity. The nectary is concentrated on the adaxial side of the petals, especially in the region near the axis of the lower part of the petals. Based on transcriptional sequence and phylogenetic analysis, we report one nectary development related gene CpCRC (CRABS CLAW), and the other four YABBY family genes, CpFIL (FILAMENTOUS FLOWER), CpYABBY2, CpYABBY5-1, and CpYABBY5-2 in C. praecox (accession no. MH718960-MH718964). Quantitative RT-PCR (qRT-PCR) results showed that the expression characteristics of these YABBY family genes were similar to those of 11 floral scent genes, namely, CpSAMT, CpDMAPP, CpIPP, CpGPPS1, CpGPPS2, CpGPP, CpLIS, CpMYR1, CpFPPS, CpTER3, and CpTER5. The expression levels of these genes were generally higher in the lower part of the petals than in the upper halves in different rounds of petals, the highest being in the innermost petals, but the lowest in the outer petals. Relative expression level of CpFIL, CpCRC, CpYABBY5-1, and CpLIS in the innermost and middle petals in OF stages is significant higher than that of in outer petals, respectively. SEM and qRT-PCR results in C. praecox showed that floral scent emission is related to the distribution of nectaries.


Asunto(s)
Calycanthaceae/química , Flores/química , Néctar de las Plantas/química , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/química
11.
Genes (Basel) ; 8(8)2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28796196

RESUMEN

Wintersweet (Chimonanthus praecox) is a popular garden plant because of its flowering time, sweet fragrance, and ornamental value. However, research into the molecular mechanism that regulates flower development in wintersweet is still limited. In this study, we sought to investigate the molecular characteristics, expression patterns, and potential functions of two C3H-type zinc finger (CZF) protein genes, CpCZF1 and CpCZF2, which were isolated from the wintersweet flowers based on the flower developmental transcriptome database. CpCZF1 and CpCZF2 were more highly expressed in flower organs than in vegetative tissues, and during the flower development, their expression profiles were associated with flower primordial differentiation, especially that of petal and stamen primordial differentiation. Overexpression of either CpCZF1 or CpCZF2 caused alterations on stamens in transgenic Arabidopsis. The expression levels of the stamen identity-related genes, such as AGAMOUS (AG), PISTILLATA (PI), SEPALLATA1 (SEP1), SEPALLATA2 (SEP2), SEPALLATA3 (SEP3), APETALA1 (AP1), APETALA2 (AP2), and boundary gene RABBIT EAR (RBE) were significantly up-regulated in CpCZF1 overexpression lines. Additionally, the transcripts of AG, PI, APETALA3SEP1-3, AP1, and RBE were markedly increased in CpCZF2 overexpressed plant inflorescences. Moreover, CpCZF1 and CpCZF2 could interact with each other by using yeast two-hybrid and bimolecular fluorescence complementation assays. Our results suggest that CpCZF1 and CpCZF2 may be involved in the regulation of stamen development and cause the formation of abnormal flowers in transgenic Arabidopsis plants.

12.
Front Plant Sci ; 7: 1461, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27733858

RESUMEN

Epimedium L. (Berberidaceae, Ranales), a perennial traditional Chinese medicinal herb, has become a new popular landscape plant for ground cover and pot culture in many countries based on its excellent ornamental characteristics and, distinctive and diverse floral morphology. However, little is known about the molecular genetics of flower development in Epimedium sagittatum. Here, we describe the characterization of EsSVP that encodes a protein sharing 68, 54, and 35% similarity with SVP, AGAMOUS-like 24 (AGL24) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) in Arabidopsis, respectively. Quantitative RT-PCR (qRT-PCR) indicated that EsSVP transcripts were principally found in petiole and leaf tissues, with little expression in roots and flowers and no in fruits. The highest EsSVP expression was observed in leaves. The flowering time of 35S::EsSVP in most Arabidopsis thaliana and in all petunia plants was not affected in both photoperiod conditions, but 35S::EsSVP 5# and 35S::EsSVP 1# Arabidopsis lines induced late and early flowering under long day (LD, 14 h light/10 h dark) and short day (SD, 10 h light/14 h dark) conditions, respectively. The 35S::EsSVP Arabidopsis produced extra secondary inflorescence or floral meristems in the axils of the leaf-like sepals with excrescent trichomes, and leaf-like sepals not able to enclose the inner three whorls completely. Moreover, almost all transgenic Arabidopsis plants showed persistent sepals around the completely matured fruits. Upon ectopic expression of 35S::EsSVP in Petunia W115, sepals were enlarged, sometimes to the size of leaves; corollas were greenish and did not fully open. These results suggest that EsSVP is involved in inflorescence meristem identity and flowering time regulation in some conditions. Although, the SVP homologs might have suffered functional diversification among diverse species between core and basal eudicots, the protein functions are conserved between Arabidopsis/Petunia and Epimedium.

13.
Ann Bot ; 113(4): 653-68, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24532606

RESUMEN

BACKGROUND AND AIMS: MADS-box transcriptional regulators play important roles during plant development. Based on phylogenetic reconstruction, the AP1/SEP/AGL6 superclade of floral MADS-box genes underwent one or two duplication events in the common ancestor of the core eudicots. However, the functional evolution of the AP1/SEP/AGL6 superclade in basal eudicots remains uncharacterized. Epimedium sagittatum is a basal eudicot species valued for its medicinal properties and showing unique floral morphology. In this study, structural and functional variation of FUL-like (AP1 subfamily), SEP-like and AGL6-like genes in this species was investigated to further our understanding of flower evolution in angiosperms. Detailed investigations into the microsynteny and evolutionary history of the floral A and E class MADS-box genes in eudicots were undertaken and used to trace their genomic rearrangements. METHODS: One AP1-like gene, two SEP-like genes and one AGL6-like gene were cloned from E. sagittatum. Their expression patterns were examined using quantitative RT-PCR in different vegetative and reproductive organs at two developmental stages. Yeast two-hybrid assays were carried out among AP1/SEP/AGL6 superclade, AP3/PI and AGAMOUS subfamily members for elucidation of dimerization patterns. In addition, possible formation of a ternary complex involving B class proteins with the A class protein EsFUL-like, the E class SEP-like protein EsAGL2-1 or the AGL6-class protein EsAGL6 were detected using yeast three-hybrid assays. Transgenic Arabidopsis or tobacco plants expressing EsFUL-like, EsAGL2-1 and EsAGL6-like under the cauliflower mosaic virus (CaMV) 35S promoter were generated and analysed. Genomic studies of AP1 syntenic regions in arabidopsis, columbine, strawberry, papaya, peach, grapevine and tomato were conducted for microsyntenic analyses. KEY RESULTS: Sequence and phylogenetic analyses showed that EsFUL-like is a member of the AP1 (A class) subfamily, EsAGL2-1 and EsAGL2-2 belong to the SEP-like (E class) subfamily, and EsAGL6-like belongs to the AGL6 (AGL6 class) subfamily. Quantitative RT-PCR analyses revealed that the transcripts of the four genes are absent, or minimal, in vegetative tissues and are most highly expressed in floral organs. Yeast two-hybrid results revealed that of the eight MADS-box proteins tested, only EsAGL6-like, EsAGL2-1 and EsAGL2 were able to form strong homo- and heterodimers, with EsAGL6-like and EsAGL2-1 showing similar interaction patterns. Yeast three-hybrid analysis revealed that EsFUL1-like, EsAGL6-like and EsAGL2-1 (representing the three major lineages of the Epimedium AGL/SEP/ALG6 superclade) could act as bridging proteins in ternary complexes with both EsAP3-2 (B class) and EsPI (B class), which do not heterodimerize themselves. Syntenic analyses of sequenced basal eudicots, rosids and asterids showed that most AP1-like and SEP-like genes have been tightly associated as neighbours since the origin of basal eudicots. Ectopic expression of EsFUL-like in arabidopsis caused early flowering through endogenous high-level expression of AP1 and formation of secondary flowers between the first and second whorls. Tobacco plants with ectopic expression of EsAGL2-1 showed shortened pistils and styles, as well as axillary and extra petals in the initial flower. CONCLUSIONS: This study provides a description of EsFUL-like, EsAGL2-1, EsAGL2-2 and EsAGL6-like function divergence and conservation in comparison with a selection of model core eudicots. The study also highlights how organization in genomic segments containing A and E class genes in sequenced model species has resulted in similar topologies of AP1 and SEP-like gene trees.


Asunto(s)
Epimedium/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS/genética , Secuencia de Aminoácidos , Epimedium/metabolismo , Evolución Molecular , Flores/genética , Flores/metabolismo , Expresión Génica , Proteínas de Dominio MADS/metabolismo , Datos de Secuencia Molecular , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Alineación de Secuencia , Sintenía , Técnicas del Sistema de Dos Híbridos
14.
PLoS One ; 9(1): e86976, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24489818

RESUMEN

Wintersweet (Chimonanthus praecox) is familiar as a garden plant and woody ornamental flower. On account of its unique flowering time and strong fragrance, it has a high ornamental and economic value. Despite a long history of human cultivation, our understanding of wintersweet genetics and molecular biology remains scant, reflecting a lack of basic genomic and transcriptomic data. In this study, we assembled three cDNA libraries, from three successive stages in flower development, designated as the flower bud with displayed petal, open flower and senescing flower stages. Using the Illumina RNA-Seq method, we obtained 21,412,928, 26,950,404, 24,912,954 qualified Illumina reads, respectively, for the three successive stages. The pooled reads from all three libraries were then assembled into 106,995 transcripts, 51,793 of which were annotated in the NCBI non-redundant protein database. Of these annotated sequences, 32,649 and 21,893 transcripts were assigned to gene ontology categories and clusters of orthologous groups, respectively. We could map 15,587 transcripts onto 312 pathways using the Kyoto Encyclopedia of Genes and Genomes pathway database. Based on these transcriptomic data, we obtained a large number of candidate genes that were differentially expressed at the open flower and senescing flower stages. An analysis of differentially expressed genes involved in plant hormone signal transduction pathways indicated that although flower opening and senescence may be independent of the ethylene signaling pathway in wintersweet, salicylic acid may be involved in the regulation of flower senescence. We also succeeded in isolating key genes of floral scent biosynthesis and proposed a biosynthetic pathway for monoterpenes and sesquiterpenes in wintersweet flowers, based on the annotated sequences. This comprehensive transcriptomic analysis presents fundamental information on the genes and pathways which are involved in flower development in wintersweet. And our data provided a useful database for further research of wintersweet and other Calycanthaceae family plants.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Lauraceae/genética , Transcriptoma , Etilenos/metabolismo , Etilenos/farmacología , Etiquetas de Secuencia Expresada , Flores/crecimiento & desarrollo , Flores/metabolismo , Regulación del Desarrollo de la Expresión Génica , Biblioteca de Genes , Lauraceae/crecimiento & desarrollo , Lauraceae/metabolismo , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacología , Análisis de Secuencia de ARN , Transducción de Señal , Terpenos/metabolismo
15.
PLoS One ; 8(5): e63389, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23691041

RESUMEN

The identification of mutants in model plant species has led to the isolation of the floral homeotic function genes that play crucial roles in flower organ specification. However, floral homeotic C-function genes are rarely studied in basal eudicots. Here, we report the isolation and characterization of the AGAMOUS (AG) orthologous gene (PaAG) from a basal eudicot London plane tree (Platanus acerifolia Willd). Phylogenetic analysis showed that PaAG belongs to the C- clade AG group of genes. PaAG was found to be expressed predominantly in the later developmental stages of male and female inflorescences. Ectopic expression of PaAG-1 in tobacco (Nicotiana tabacum) resulted in morphological alterations of the outer two flower whorls, as well as some defects in vegetative growth. Scanning electron micrographs (SEMs) confirmed homeotic sepal-to-carpel transformation in the transgenic plants. Protein interaction assays in yeast cells indicated that PaAG could interact directly with PaAP3 (a B-class MADS-box protein in P. acerifolia), and also PaSEP1 and PaSEP3 (E-class MADS-box proteins in P. acerifolia). This study performed the functional analysis of AG orthologous genes outside core eudicots and monocots. Our findings demonstrate a conserved functional role of AG homolog in London plane tree, which also represent a contribution towards understanding the molecular mechanisms of flower development in this monoecious tree species.


Asunto(s)
Genes Homeobox , Genes de Plantas , Magnoliopsida/genética , Secuencia de Aminoácidos , Clonación Molecular , Magnoliopsida/clasificación , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Homología de Secuencia de Aminoácido , Nicotiana/genética
16.
Int J Mol Sci ; 14(1): 1119-31, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23299438

RESUMEN

The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.


Asunto(s)
Epimedium/genética , Flores/genética , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Epimedium/clasificación , Epimedium/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular , Mutación , Fenotipo , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Proteínas de Plantas/clasificación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Nicotiana/genética , Nicotiana/crecimiento & desarrollo , Factores de Transcripción/genética
17.
Plant Cell Rep ; 31(10): 1851-65, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22821362

RESUMEN

The LEAFY/FLORICAULA (LFY/FLO) homologous genes are necessary for normal flower development in diverse angiosperm species. To understand the genetic and molecular mechanisms underlying floral initiation and development in Platanaceae, an early divergent eudicot family consisting of large monoecious trees, we isolated a homolog of LFY/FLO, PlacLFY, and its promoter from London plane (Platanus acerifolia). PlacLFY is 1,419 bp in length, with an ORF of 1,122 bp encoding a predicted polypeptide of 374 amino acids and 5'/3'-UTR of 54 and 213 bp, respectively. The putative PlacLFY protein showed a high degree of identity (56-84 %) with LFY/FLO homologs from other species, including two highly conserved regions, the N and C domains, and a less conserved amino-terminal proline-rich region. Real-time PCR analysis showed that PlacLFY was expressed mainly in male inflorescences from May of the first year to March of next year, with the highest expression level in December, and in female inflorescences from June to April of next year. PlacLFY mRNA was also detected strongly in subpetiolar buds of December from 4-year-old and adult trees, and slightly in stem of young seedling and young leaf of adult plant. Additionally, we cloned 1,138 bp promoter sequence of PlacLFY and we drove GUS expression in transgenic tobacco by the chimerical pPlacLFY::GUS construction. Histological GUS staining analysis indicated that PlacLFY promoter can drive GUS gene expression in shoot apex, stem, young leaf and petiole, flower stalk, petal tip, and young/semi-mature fruits of transgenic tobacco, which is almost identical to the expression pattern of PlacLFY in London plane. The results revealed that the PlacLFY gene isolated from London plane is expressed not only in reproductive organ but also in vegetative organs. Moreover, this expression pattern is consistent with the expression pattern in tobacco of a GUS reporter gene under the control of the potential promoter region of PlacLFY.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Magnoliopsida/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , ADN de Plantas/genética , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Vectores Genéticos , Inflorescencia/genética , Inflorescencia/metabolismo , Magnoliopsida/metabolismo , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Dominios Proteicos Ricos en Prolina , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Alineación de Secuencia , Análisis de Secuencia de ADN/métodos , Homología de Secuencia de Aminoácido , Regiones no Traducidas
18.
Water Res ; 46(8): 2693-704, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22406287

RESUMEN

Soluble microbial products (SMP), a majority of organic matter in effluents, play a key role in membrane fouling. A series of filtration experiments were conducted, and demonstrated that the flux decrement rate was in order of cellulose acetate membrane (CA, 65.4%), polyvinylidene fluoride (PVDF, 47.9%) and polyether sulfones (PES, 29.2%). Results showed that the fouling behavior of membrane should be predicted from the combined knowledge of solution chemistry, surface chemical properties and surface morphology. To better understand the interactions between the SMP and different membranes, a technique for reconstructing the membrane surface topology was developed on the basis of statistical parameters obtained from atomic force microscopy. The interaction energy, represented by extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) potential, was calculated by surface element integration, allowing exploring the interaction energy profiles for different surfaces and providing considerable insights into the role of such interactions on the macroscopic fouling behavior. The resulting interaction energy differed considerably from the corresponding interaction between perfectly smooth surfaces. The great influence of protrusion on the membrane surface was to reduce the primary energy barrier height, thus rendering rough surface more favorable for deposition. An attractive energy region was immediately surrounded by each positive asperity as demonstrated in the roughness-engendered interaction energy maps. As the SMP approached closer to the membrane, they had a high probability of getting trapped in the attractive energy region, leading to a more rapid loss of flux than smooth membrane.


Asunto(s)
Bacterias/química , Membranas Artificiales , Compuestos Orgánicos/química , Incrustaciones Biológicas , Simulación por Computador , Modelos Químicos , Solubilidad , Tensión Superficial , Termodinámica
19.
J Plant Res ; 125(3): 381-93, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22068722

RESUMEN

London plane tree (Platanus acerifolia Willd.) is an important member of the Platanaceae family, being popular as an urban landscaping tree. Here, we report the isolation of five MADS-box genes from the basal angiosperm, Platanus acerifolia. Sequence and phylogenetic analyses identified FRUITFUL-like, APETELA3-like, AGAMOUS-like, SEPALLATA1-like and SEPALLATA3-like sequences and, hence, we term the respective Platanus acerifolia genes as PlacFUL, PlacAP3, PlacAG, PlacSEP1 and PlacSEP3. From these identities we infer that they represent candidate A-, B-, C-class and two E-class genes, respectively. The conserved MIK or MIKC domains from the nucleotide and protein sequences of PlacFUL, PlacAP3, PlacAG, PlacSEP1 and PlacSEP3 were analyzed using the maximum-likelihood, MrBayes and neighbor-joining methods. The results confirmed P. acerifolia as a basal eudicot. Expression pattern was determined by reverse transcriptase PCR, which showed all paralogous genes have distinct expression patterns, suggesting that they had undergone functional divergence.


Asunto(s)
Evolución Molecular , Proteínas de Dominio MADS/clasificación , Proteínas de Dominio MADS/genética , Magnoliopsida/genética , Filogenia , Árboles/genética , Secuencia de Aminoácidos , Evolución Biológica , China , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Dominio MADS/metabolismo , Magnoliopsida/metabolismo , Datos de Secuencia Molecular
20.
Gene ; 473(2): 82-91, 2011 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-21112379

RESUMEN

Flower development has been extensively characterized in the model species Arabidopsis thaliana and Antirrhinum majus. However, there have been few studies in woody species. Here, we report the isolation and characterization of five PISTILLATA (PI) homoeologous genes (PaPI1-to-5) from the London Plane tree (Platanus acerifolia Willd). PaPI1 and PaPI2 show a similar genomic structure to other known PI homoeologs, but PaPI3/4/5 lack intron sequences. In addition, PaPI5 lacks the third, fourth and fifth exons which encode the K-domain. These altered gene copies may have originated as 'processed' retrogenes. PaPI2 appears micro-regulated by alternative splicing, displaying three splice forms (PaPI2a, PaPI2b and PaPI2c). RT-PCR analysis showed different expression profiles and transcript abundance for the five PaPI genes. PaPI transcripts encoding full-length polypeptides were expressed predominantly in male/female inflorescences and PaPI2a was the most abundant transcript (59%) indicating that PaPI2 may be the major functional PI-homoeolog in London Plane. Phenotypic characterization in a heterologous expression system demonstrated that the full-length PaPI product functions as a B class gene. By contrast the PaPI5 form, which lacks the K-domain, had no apparent effect on flower development. In vitro studies also demonstrated that the K-domain is required to form PaPI/PaAP3 heterodimers.


Asunto(s)
Empalme Alternativo , Genes de Plantas , Magnoliopsida/genética , Exones , Flores/genética , Flores/crecimiento & desarrollo , Intrones , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...