Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomed Pharmacother ; 177: 117022, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917756

RESUMEN

BACKGROUND: The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS: EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS: The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-ß1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS: Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.


Asunto(s)
Traumatismos de las Arterias Carótidas , Células Progenitoras Endoteliales , Hiperplasia , Campos Magnéticos , Nanopartículas Magnéticas de Óxido de Hierro , Neointima , Ratas Sprague-Dawley , Animales , Células Progenitoras Endoteliales/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/química , Neointima/patología , Traumatismos de las Arterias Carótidas/patología , Masculino , Ratas
2.
Bioresour Technol ; 394: 130216, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38122994

RESUMEN

Brewer's spent grain (BSG) is a main byproduct of the beer industry. BSG is rich in a variety of nutrients, and the search for its effective, high-value utilization is ongoing. Environmental probiotic factor γ-PGA was produced by fermenting Bacillus subtilis with BSG substrate and the fermenting grain components were analyzed. The γ-PGA yield reached 31.58 ± 0.21 g/kg of BSG. Gas chromatography-mass spectrometry and non-targeted metabolomics analyses revealed 73 new volatile substances in the fermenting grains. Furthermore, 2,376 metabolites were upregulated after fermentation and several components were beneficial for plant growth and development (such as ectoine, acetyl eugenol, L-phenylalanine, niacin, isoprene, pantothenic acid, dopamine, glycine, proline, jasmonic acid, etc). These results show that it is possible to synthesize adequate amounts of γ-PGA for use as a functional fertilizer.


Asunto(s)
Fertilizantes , Ácido Poliglutámico , Fermentación , Fertilizantes/análisis , Grano Comestible/metabolismo
3.
Microorganisms ; 11(5)2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37317138

RESUMEN

[Background] Bacillus LFB112 is a strain of Bacillus amyloliquefaciens screened in our laboratory. Previous studies found that it has a strong ability for fatty acid metabolism and can improve the lipid metabolism of broilers when used as feed additives. [Methods] This study aimed to confirm the fatty acid metabolism of Bacillus LFB112. Sterilized soybean oil (SSO) was added to the Beef Peptone Yeast (BPY) medium, and its effect on fatty acid content in the supernatant and bacteria, as well as expression levels of genes related to fatty acid metabolism, were studied. The control group was the original culture medium without oil. [Results] Acetic acid produced by the SSO group of Bacillus LFB112 decreased, but the content of unsaturated fatty acids increased. The 1.6% SSO group significantly increased the contents of pyruvate and acetyl-CoA in the pellets. Furthermore, the mRNA levels of enzymes involved in the type II fatty acid synthesis pathway of FabD, FabH, FabG, FabZ, FabI, and FabF were up-regulated. [Conclusions] Soybean oil increased the content of acetyl-CoA in Bacillus LFB112, activated its type II fatty acid synthesis pathway, and improved the fatty acid metabolism level of Bacillus LFB112. These intriguing results pave the way for further investigations into the intricate interplay between Bacillus LFB112 and fatty acid metabolism, with potential applications in animal nutrition and feed additive development.

4.
Curr Res Food Sci ; 6: 100460, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36798948

RESUMEN

Fermentation and aging are the key stages of flavor formation in Sichuan sun vinegar (SSV), but the generation mechanisms of the flavor produced by these processes are unknown. However, complex microbial metabolism is critical to the flavor development of SSV. In this study, we analyzed the key flavor compounds present in SSV. Combined with odor activity value (OAV), the main aroma components of SSV were screened, and the relationship between microorganisms and key flavor formation was predicted using metagenomic sequencing technology. The results revealed 38 key flavor compounds in SSV. Lactobacillus, Weissella, Acetobacter, Lichtheimia, Pediococcus, Oenococcus, Brettanomyces, Kazachstania, Pichia, Xanthomonas, Lenconostoc are widely involved in the production of key flavor compounds such as 2,3-butanediol, 2-Furanmethanol, phenylethanol, 3-(Methylthio)-1-propanol, acetic acid, lactic acid, butyric acid, isovaleric acid and other organic acids. Among them, Lichtheimia and Lactobacillus are important genera for the degradation of starch, arabinoxylan and cellulose. The acetaldehyde,4-ethyl-2-methoxy-phenol and 2-methoxy-4-methyl-phenol production pathway may be related to Lactobacillus, Acetobacter and Brettanomyces. This study provides a new understanding of the key flavor-formation stage and flavor compound generation mechanism of SSV and provides a reference for the screening and isolation of functional strains and the reconstruction of microbial communities.

5.
Microorganisms ; 11(1)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677423

RESUMEN

The aim of this study was to apply a strategy to express a recombinant CLP peptide and explore its application as a product derived from natural compounds. The amphiphilic CLP peptide was hybridized from three parent peptides (CM4, LL37, and TP5) and was considered to have potent endotoxin-neutralizing activity with minimal cytotoxic and hemolytic activity. To achieve high secretion expression, an expression vector of pPICZαA-HSA-CLP was constructed by the golden gate cloning strategy before being transformed into Pichia pastoris and integrated into the genome. The recombinant CLP was purified through the Ni-NTA affinity chromatography and analyzed by SDS-PAGE and mass spectrometry. The Limulus amebocyte lysate (LAL) test exhibited that the hybrid peptide CLP inhibited lipopolysaccharides (LPS) in a dose-dependent manner and was significantly (p < 0.05) more efficient compared to the parent peptides. In addition, it essentially diminished (p < 0.05) the levels of nitric oxide and pro-inflammatory cytokines (including TNF-α, IL6, and IL-1ß) in LPS-induced mouse RAW264.7 macrophages. As an attendant to the control and the parental peptide LL37, the number of LPS-induced apoptotic cells was diminished compared to the control parental peptide LL37 (p < 0.05) with the treatment of CLP. Consequently, we concluded that the hybrid peptide CLP might be used as a therapeutic agent.

6.
Environ Pollut ; 302: 119058, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227841

RESUMEN

In order to investigate the effectiveness of diagnostic ratios in polycyclic aromatic hydrocarbon (PAH) source discrimination, semi-open pyrolysis experiments have been performed on an organic-rich, immature shale from the Winnipegosis Formation in southeastern Saskatchewan, Western Canada Sedimentary Basin. The concentrations and distributions of PAHs in expelled oils and residual extracts change drastically with increasing pyrolysis temperatures. The difficulty and inconsistency commonly encountered by using diagnostic ratios for PAH source identification in environmental samples seem to be rooted in the great variation of the diagnostic ratios themselves under different formation temperatures. No single diagnostic ratio allows a simple segregation of PAHs into petrogenic or pyrogenic sources. Some diagnostic ratios such as anthracene/phenanthrene and benz[a]anthracene/chrysene compound pairs are mostly effective for low-temperature pyrolysis, whereas indeno[1,2,3-cd]pyrene/benzo[ghi]perylene, aromatic hydrocarbon ring number distribution and degree of alkylation are mainly valid for high-temperature pyrolysis. The diagnostic ratios based on fluoranthene/pyrene, benzo[bk]fluoranthene/benz[a]pyrene compound pairs enjoy limited validity over a narrow pyrolysis range, whereas parameters derived from aromatic hydrocarbon ring number distribution, degree of alkylation and 1,7-/(2,6- + 1,7-dimentylphenanthrene) may be undistinguishable between petrogenesis and low-temperature pyrolysis. The apparent temperature-related variability must be taken into account when using the diagnostic ratios for source identification purposes. Multiple molecular markers need to be carefully selected to confirm the results obtained with PAH diagnostic ratios. Mechanical use of diagnostic ratios most likely leads to misinterpretation of environmental samples.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Pirólisis , Monitoreo del Ambiente/métodos , Extractos Vegetales , Aceites de Plantas , Hidrocarburos Policíclicos Aromáticos/análisis , Saskatchewan
7.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35163165

RESUMEN

Recently, the drawbacks arising from the overuse of antibiotics have drawn growing public attention. Among them, drug-resistance (DR) and even multidrug-resistance (MDR) pose significant challenges in clinical practice. As a representative of a DR or MDR pathogen, Staphylococcus aureus can cause diversity of infections related to different organs, and can survive or adapt to the diverse hostile environments by switching into other phenotypes, including biofilm and small colony variants (SCVs), with altered physiologic or metabolic characteristics. In this review, we briefly describe the development of the DR/MDR as well as the classical mechanisms (accumulation of the resistant genes). Moreover, we use multidimensional scaling analysis to evaluate the MDR relevant hotspots in the recent published reports. Furthermore, we mainly focus on the possible non-classical resistance mechanisms triggered by the two important alternative phenotypes of the S. aureus, biofilm and SCVs, which are fundamentally caused by the different global regulation of the S. aureus population, such as the main quorum-sensing (QS) and agr system and its coordinated regulated factors, such as the SarA family proteins and the alternative sigma factor σB (SigB). Both the biofilm and the SCVs are able to escape from the host immune response, and resist the therapeutic effects of antibiotics through the physical or the biological barriers, and become less sensitive to some antibiotics by the dormant state with the limited metabolisms.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Animales , Proteínas Bacterianas/genética , Biopelículas/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , Humanos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad
8.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34769113

RESUMEN

The increasing numbers of infections caused by multidrug-resistant (MDR) pathogens highlight the urgent need for new alternatives to conventional antibiotics. Antimicrobial peptides have the potential to be promising alternatives to antibiotics because of their effective bactericidal activity and highly selective toxicity. The present study was conducted to investigate the antibacterial, antibiofilm, and anti-adhesion activities of different CTP peptides (CTP: the original hybrid peptide cathelicidin 2 (1-13)-thymopentin (TP5); CTP-NH2: C-terminal amidated derivative of cathelicidin 2 (1-13)-TP5; CTPQ: glutamine added at the C-terminus of cathelicidin 2 (1-13)-TP5) by determining the minimal inhibitory concentrations (MICs), minimal bactericidal concentrations (MBCs), propidium iodide uptake, and analysis by scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy). The results showed that CTPs had broad-spectrum antibacterial activity against different gram-positive and gram-negative bacteria, with MICs against the tested strains varying from 2 to 64 µg/mL. CTPs at the MBC (2 × MIC 64 µg/mL) showed strong bactericidal effects on a standard methicillin-resistant Staphylococcus aureus strain ATCC 43300 after co-incubation for 6 h through disruption of the bacterial membrane. In addition, CTPs at 2 × MIC also displayed effective inhibition activity of several S. aureus strains with a 40-90% decrease in biofilm formation by killing the bacteria embedded in the biofilms. CTPs had low cytotoxicity on the intestinal porcine epithelial cell line (IPEC-J2) and could significantly decrease the rate of adhesion of S. aureus ATCC 43300 on IPEC-J2 cells. The current study proved that CTPs have effective antibacterial, antibiofilm, and anti-adhesion activities. Overall, this study contributes to our understanding of the possible antibacterial and antibiofilm mechanisms of CTPs, which might be an effective anti-MDR drug candidate.


Asunto(s)
Catelicidinas , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Timopentina , Biopelículas/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Pruebas de Sensibilidad Microbiana
9.
Stem Cell Res Ther ; 12(1): 99, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33536065

RESUMEN

BACKGROUND: Reendothelialisation is the natural pathway that inhibits neointimal hyperplasia and in-stent restenosis. Circulating endothelial progenitor cells (EPCs) derived from bone marrow (BM) might contribute to endothelial repair. However, the temporal and spatial distributions of reendothelialisation and neointimal hyperplasia after EPC transplantation in injured arteries are currently unclear. METHODS: A carotid balloon injury (BI) model was established in Sprague-Dawley rats, and PKH26-labelled BM-derived EPCs were transplanted after BI. The carotid arteries were harvested on the first, fourth, seventh, and 14th day post-injury and analysed via light-sheet fluorescence microscopy and pathological staining (n = 3). EPC and human umbilical vein endothelial cell culture supernatants were collected, and blood samples were collected before and after transplantation. The paracrine effects of VEGF, IGF-1, and TGF-ß1 in cell culture supernatants and serum were analysed by enzyme-linked immunosorbent assay (n = 4). RESULTS: Transplanted EPCs labelled with PKH26 were attached to the injured luminal surface the first day after BI. In the sham operation group, the transplanted EPCs did not adhere to the luminal surface. From the fourth day after BI, the mean fluorescence intensity of PKH26 decreased significantly. However, reendothelialisation and inhibition of neointimal hyperplasia were significantly promoted by transplanted EPCs. The degree of reendothelialisation of the EPC7d and EPC14d groups was higher than that of the BI7d and BI14d groups, and the difference in neointimal hyperplasia was observed between the EPC14d and BI14d groups. The number of endothelial cells on the luminal surface of the EPC14d group was higher than that of the BI14d group. The number of infiltrated macrophages in the injured artery decreased in the EPC transplanted groups. CONCLUSIONS: Transplanted EPCs had chemotactic enrichment and attached to the injured arterial luminal surface. Although decreasing significantly after the fourth day at the site of injury after transplantation, transplanted EPCs could still promote reendothelialisation and inhibit neointimal hyperplasia. The underlying mechanism is through paracrine cytokines and not differentiation into mature endothelial cells.


Asunto(s)
Células Progenitoras Endoteliales , Animales , Arterias Carótidas , Catéteres , Células Progenitoras Endoteliales/patología , Hiperplasia/patología , Ratas , Ratas Sprague-Dawley
10.
Molecules ; 25(23)2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-33255863

RESUMEN

EF-1 is a novel peptide derived from two bacteriocins, plantaricin E and plantaricin F. It has a strong antibacterial activity against Escherichia coli and with negligible hemolytic effect on red blood cells. However, the chemical synthesis of EF-1 is limited by its high cost. In this study, we established a heterologous expression of EF-1 in Pichia pastoris. The transgenic strain successfully expressed hybrid EF-1 peptide, which had a molecular weight of ~5 kDa as expected. The recombinant EF-1 was purified by Ni2+ affinity chromatography and reversed-phase high performance liquid chromatography (RP-HPLC), which achieved a yield of 32.65 mg/L with a purity of 94.9%. The purified EF-1 exhibited strong antimicrobial and bactericidal activities against both Gram-positive and -negative bacteria. Furthermore, propidium iodide staining and scanning electron microscopy revealed that EF-1 can directly induce cell membrane permeabilization of E. coli. Therefore, the hybrid EF-1 not only preserves the individual properties of the parent peptides, but also acquires the ability to disrupt Gram-negative bacterial membrane. Meanwhile, such an expression system can reduce both the time and cost for large-scale peptide production, which ensures its potential application at the industrial level.


Asunto(s)
Antiinfecciosos/farmacología , Bacterias/efectos de los fármacos , Expresión Génica , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/farmacología , Péptidos/genética , Péptidos/farmacología , Pichia/genética , Proteínas Recombinantes , Antiinfecciosos/aislamiento & purificación , Bacterias/metabolismo , Bacterias/ultraestructura , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/aislamiento & purificación , Péptidos/aislamiento & purificación
11.
FASEB J ; 34(12): 16049-16072, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33058296

RESUMEN

Intestinal inflammatory disorders, such as inflammatory bowel disease, are major contributors to mortality and morbidity in humans and animals worldwide. While some native peptides have great potential as therapeutic agents against intestinal inflammation, potential cytotoxicity, anti-inciting action, and suppression of anti-inflammatory activity may limit their development as anti-inflammatory agents. Peptide hybridization is an effective approach for the design and engineering of novel functional peptides because hybrid peptides combine the advantages and benefits of various native peptides. In the present study, a novel hybrid anti-inflammatory peptide that combines the active center of Cecropin A (C) and the core functional region of LL-37 (L) was designed [C-L peptide; C (1-8)-L (17-30)] through in silico analysis to reduce cytotoxicity and improve the anti-inflammatory activity of the parental peptides. The resulting C-L peptide exhibited lower cytotoxicity than either C or L peptides alone. C-L also exerted a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses in RAW264.7 macrophages and in the intestines of a mouse model. The hybrid peptide exhibited increased anti-inflammatory activity compared to the parental peptides. C-L plays a role in protecting intestinal tissue from damage, LPS-induced weight loss, and leukocyte infiltration. In addition, C-L reduces the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), IL-1ß, and interferon-gamma (IFN-γ), as well as reduces cell apoptosis. It also reduced mucosal barrier damage caused by LPS. The anti-inflammatory effects of the hybrid peptide were mainly attributed to its LPS-neutralizing activity and antagonizing the activation of LPS-induced Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD2). The peptide also affected the TLR4-(nuclear factor κB) signaling pathway, modulating the inflammatory response upon LPS stimulation. Collectively, these findings suggest that the newly designed peptide, C-L, could be developed into a novel anti-inflammatory agent for animals or humans.


Asunto(s)
Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Mucosa Intestinal/efectos de los fármacos , Péptidos/farmacología , Animales , Péptidos Catiónicos Antimicrobianos/farmacología , Línea Celular , Inflamación/inducido químicamente , Inflamación/metabolismo , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Lipopolisacáridos/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/efectos de los fármacos , Membrana Mucosa/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-32582649

RESUMEN

CATH-2TP5 is a linear cationic hybrid peptide, consequent from naturally occurring antimicrobial peptide (AMPs) Cathelicidin-2 (CATH-2) and Immunomodulatory peptide Thymopentin (TP5) having dynamic and potent anti-inflammatory activities without hemolytic effect. The biocompatible mechanism of CATH-2TP5 is favored to explore new methodologies in the direction of biomedical applications. In this retrospectively study, an antiendotoxin and anti-inflammatory hybrid peptide CATH-2TP5 was emulated into pPICZα-A and successfully expressed in Pichia pastoris (P. pastoris). The recombinant CATH-2TP5 was purified through the Ni-affinity column and reversed-phase HPLC. The purified CATH-2TP5 peptide exhibited robust anti-endotoxin activity and significantly (p < 0.05) neutralized the effect of lipopolysaccharide (LPS). Furthermore, the down-regulated effect of CATH-2TP was more pronounced (p < 0.05) on LPS-induced cytotoxic effects, nitric oxide secretion and pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) in murine RAW264.7 macrophages. As associated to control and parental peptide the number of apoptotic cells was also contracted with the treatment of CATH-2TP5. Thus, we concluded that CATH-2TP5 peptide may be used in various biomedical applications as a therapeutic drug.

13.
Front Pharmacol ; 11: 461, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32457599

RESUMEN

DEFB-TP5 is a novel auspicious health-beneficial peptide derivative from two naturally occurring peptides, ß-Defensin (DEFB) and thymopentin (TP5), and shows strong anti-inflammatory activity and binds to LPS without cytotoxicity and hemolytic effect. Furthermore, the application of DEFB-TP5 peptide is inadequate by its high cost. In the current study, we developed a biocompatible mechanism for expression of the DEFB-TP5 peptide in Pichia pastoris. The transgenic strain of hybrid DEFB-TP5 peptide with a molecular weight of 6.7kDa as predictable was obtained. The recombinant DEFB-TP5 peptide was purified by Ni-NTA chromatography, estimated 30.41 mg/L was obtained from the cell culture medium with 98.2% purity. Additionally, The purified DEFB-TP5 peptide significantly (p< 0.05) diminished the release of nitric oxide (NO), TNF-α, IL-6, IL-1ß in LPS-stimulated RAW264.7 macrophages in a dose-dependent manner. This study will not only help to understand the molecular mechanism of expression that can potentially be used to develop an anti-endotoxin peptide but also to serve as the basis for the development of antimicrobial and anti-inflammatory agents as well, which also provides a potential source for the production of recombinant bioactive DEFB-TP5 at the industrial level.

14.
Front Immunol ; 10: 1841, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31447849

RESUMEN

Intestinal inflammatory disorders, such as inflammatory bowel disease (IBD), are associated with increased pro-inflammatory cytokine secretion in the intestines. Furthermore, intestinal inflammation increases the risk of enteric cancer, which is a common malignancy globally. Native anti-inflammatory peptides are a class of anti-inflammatory agents that could be used in the treatment of several intestinal inflammation conditions. However, potential cytotoxicity, and poor anti-inflammatory activity have prevented their development as anti-inflammatory agents. Therefore, in this study, we designed and developed a novel hybrid peptide for the treatment of intestinal inflammation. Eight hybrid peptides were designed by combining the active centers of antimicrobial peptides, including LL-37 (13-36), YW12D, innate defense regulator 1, and cathelicidin 2 (1-13) with thymopentin or the active center of thymosin alpha 1 (Tα1) (17-24). The hybrid peptide, LL-37-Tα1 (LTA), had improved anti-inflammatory activity with minimal cytotoxicity. LTA was screened by molecule docking and in vitro experiments. Likewise, its anti-inflammatory effects and mechanisms were also evaluated using a lipopolysaccharide (LPS)-induced intestinal inflammation murine model. The results showed that LTA prevented LPS-induced impairment in the jejunum epithelium tissues and infiltration of leukocytes, which are both histological markers of inflammation. Additionally, LTA decreased the levels of tumor necrosis factor-alpha, interferon-gamma, interleukin-6, and interleukin-1ß. LTA increased the expression of zonula occludens-1 and occludin, and reduced permeability and apoptosis in the jejunum of LPS-treated mice. Additionally, its anti-inflammatory effect is associated with neutralizing LPS, binding to the Toll-like receptor 4-myeloid differentiation factor 2 (TLR4/MD-2) complex, and modulating the nuclear factor-kappa B signal transduction pathway. The findings of this study suggest that LTA may be an effective therapeutic agent in the treatment of intestinal inflammation.


Asunto(s)
Antiinflamatorios/uso terapéutico , Diseño de Fármacos , Desarrollo de Medicamentos , Inflamación/tratamiento farmacológico , Enfermedades Intestinales/tratamiento farmacológico , Animales , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Citocinas/antagonistas & inhibidores , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , FN-kappa B/fisiología , Péptidos/uso terapéutico , Células RAW 264.7 , Timalfasina/uso terapéutico , Uniones Estrechas/efectos de los fármacos , Catelicidinas
15.
Exp Cell Res ; 370(1): 116-126, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29908162

RESUMEN

Transplantation of bone marrow-derived endothelial progenitor cells (BM-EPCs) has been used as a therapeutic strategy for vascular repair. However, it remains controversial whether BM-EPCs exhibit clonal endothelial colony-forming cell (ECFC) capacity, a characteristic of true EPCs. The aim of this study was to isolate and explore the cellular properties of BM-ECFCs. We isolated BM-ECFCs from rat bone marrow with high purity via an optimized method. This approach involved the removal of selective colonies based on the conventional differential adhesive culture method used to isolate ECFCs from peripheral and umbilical cord blood. Our results indicate that primary colony BM-ECFCs display a panel of surface antigen markers consistent with endothelial cells. These BM-ECFCs coexpress CD34, CD133, and VEGFR2 at high levels, and these levels decrease with passaging. These cells have high potential for proliferation, migration, and formation of capillary-like structures on Matrigel, and these abilities are retained during ex vivo expansion. Furthermore, BM-ECFCs cultured with 10% or 20% fetal bovine serum demonstrated two different patterns of spontaneous capillary-like structure formation. These results provide a foundation for isolation of ECFCs from human bone marrow for autologous cell transplantation and tissue engineering applications in the future.


Asunto(s)
Médula Ósea/patología , Células Progenitoras Endoteliales/citología , Antígeno AC133/metabolismo , Animales , Antígenos CD34/metabolismo , Médula Ósea/metabolismo , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Colágeno/metabolismo , Combinación de Medicamentos , Células Progenitoras Endoteliales/metabolismo , Sangre Fetal/citología , Sangre Fetal/metabolismo , Laminina/metabolismo , Neovascularización Fisiológica/fisiología , Proteoglicanos/metabolismo , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
16.
Food Res Int ; 106: 410-419, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29579942

RESUMEN

Chicken blood contains copious amounts of edible protein, which is currently underutilized. In this study, chicken blood corpuscle was hydrolyzed using two proteases (papain and flavourzyme) and its hydrolysis conditions were optimized by means of response surface methodology (RSM). The optimal conditions based on obtaining a hydrolysate with maximum antioxidant activity were E/S 2.0%, temperature 50°C, and time 6.0h. Under the above conditions, the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity, superoxide anion scavenging activity and reducing power of papain and flavourzyme hydrolysate (PFH) were 94.99±0.31%, 57.39±2.82%, and 1.83±0.06, respectively. Additionally, PFH showed not only a stable DPPH scavenging activity in the pH ranges of 1 to 7, but also a good tolerance to magnesium (Mg2+), potassium (K+) and calcium (Ca2+). We also found that PFH retained at least 95% of antioxidant capacity under simulated gastrointestinal digestion. Subsequently, PFH was purified sequentially by ultrafiltration, anion exchange chromatography, gel filtration chromatography, and high-performance liquid chromatography (HPLC). Finally, the sequence of the peptide with the highest antioxidant activity was identified to be AEDKKLIQ (943.5Da) using LC-ESI-MS/MS. Further, this peptide showed free radicals scavenging ability and reducing power as well as that of GSH (P>0.05), further evidencing its potential used as an antioxidative ingredient.


Asunto(s)
Antioxidantes/aislamiento & purificación , Células Sanguíneas/química , Pollos/sangre , Péptidos/aislamiento & purificación , Animales , Antioxidantes/farmacología , Compuestos de Bifenilo/química , Digestión , Endopeptidasas/química , Jugo Gástrico/química , Concentración de Iones de Hidrógeno , Hidrólisis , Secreciones Intestinales/química , Papaína/química , Péptidos/sangre , Péptidos/farmacología , Picratos/química , Temperatura , Factores de Tiempo
17.
Cell Biochem Biophys ; 70(1): 511-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24756728

RESUMEN

Accumulating studies have evaluated the association of Alpha-2-Macroglobulin gene (A2M) 5 bp insertion/deletion (5 bp I/D, rs3832852) and Ile1000Val (rs669) polymorphisms with Alzheimer's disease (AD) risk, but the results remain inconclusive. To investigate whether these two polymorphisms facilitate the susceptibility to AD, we conducted a comprehensive systematic review and meta-analysis. Databases of PubMed, Embase, Web of Science, Medline, CNKI, and Google Scholar were searched to get the genetic association studies. All statistical analyses were conducted with Review Manager 5.2 and STATA11.0. Fifty-two articles were included in the final meta-analysis. We performed meta-analysis of 39 studies involving 8,267 cases and 7,932 controls for the 5 bp I/D polymorphism and 27 studies involving 6,585 cases and 6,637 controls for the Ile/Val polymorphism. Overall results did not show significant association between these two polymorphisms and AD risk in dominant, recessive, and multiplicative genetic models. On the stratification analyses by ethnicity and APOE ε4 status with genotypes of polymorphism sites, similar negative associations were found. The meta-analysis suggests that there is no enough evidence for associations of A2M gene polymorphisms (5 bp I/D, Ile1000Val) with AD risk at present, even after stratification by ethnicity and APOE ε4 with genotypes of polymorphism sites. However, due to the heterogeneity in the meta-analysis, the results should be interpreted with caution.


Asunto(s)
Enfermedad de Alzheimer/genética , Predisposición Genética a la Enfermedad/genética , Mutación INDEL , Polimorfismo de Nucleótido Simple , alfa-Macroglobulinas/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA