Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Infect Drug Resist ; 16: 6567-6586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823028

RESUMEN

Objective: This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods: A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results: Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion: This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.

2.
Front Bioeng Biotechnol ; 10: 1028691, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561042

RESUMEN

Protein is one of the most important biological macromolecules in life, which plays a vital role in cell growth, development, movement, heredity, reproduction and other life activities. High quality isolation and purification is an essential step in the study of the structure and function of target proteins. Therefore, the development of protein purification technologies has great theoretical and practical significance in exploring the laws of life activities and guiding production practice. Up to now, there is no forthcoming method to extract any proteins from a complex system, and the field of protein purification still faces significant opportunities and challenges. Conventional protein purification generally includes three steps: pretreatment, rough fractionation, and fine fractionation. Each of the steps will significantly affect the purity, yield and the activity of target proteins. The present review focuses on the principle and process of protein purification, recent advances, and the applications of these technologies in the life and health industry as well as their far-reaching impact, so as to promote the research of protein structure and function, drug development and precision medicine, and bring new insights to researchers in related fields.

3.
ACS Appl Mater Interfaces ; 14(36): 41037-41044, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044398

RESUMEN

The SnO2 electron transport layer (ETL) for perovskite solar cells (PSCs) has been recognized as one of the most reported protocols due to its processing convenience, high reproducibility, and excellence in device performance. To date, the thermal annealing (TA) process is still an essential step for a high-quality SnO2 ETL to reduce the surface trap density. This however could restrict its processing with high thermal energy input and set a barrier to the easiness of manufacturing such as processing under room-temperature conditions. Herein, we report a thermal annealing-free (TAF) SnO2 ETL by an alternative UV-ozone (UVO) treatment. This technique simultaneously endows the SnO2 ETL with a deeper valence band maximum (EVB) and lower defect density. Furthermore, with this SnO2 ETL, a power conversion efficiency (PCE) of 21.46 and 22.26% was achieved based on MAPbI3 and Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 absorbers, respectively. Importantly, a fully room-temperature-processed (RTP) PSC based on the TAF-SnO2 ETL has been demonstrated with a PCE of 20.88% on a rigid substrate and 15.92% on a flexible substrate, which are the highest values for RTP solar cells.

4.
Eng Life Sci ; 21(10): 653-665, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34690636

RESUMEN

Isobutanol is a widely used platform compound and a raw material for synthesizing many high value-added compounds. It also has excellent fuel properties and is an ideal gasoline additive or substitute with a very broad development space. Isobutanol production by biological fermentation has the advantages of a comprehensive source of raw materials, low cost, environmental protection, and sustainability. However, it also has disadvantages such as many impurities, low isobutanol concentration, and difficulty separating the water + isobutanol azeotrope. Thus, it is necessary to explore an appropriate downstream separation process for the water + isobutanol azeotrope. K2CO3 with a strong salting-out effect was used as the salting-out agent, and the salting-out of isobutanol from aqueous solutions was investigated at 298.15 K. The effect of the initial salt concentration in the aqueous solution, the recovery of isobutanol, and the effect of dehydration were investigated in detail. The e-NRTL-RK model was employed to generate the binary parameters for isobutanol and water, and electrolyte pair parameters for water/isobutanol and ions to reproduce the phase diagram with high accuracy. The processes of solvent extractive distillation, and salting-out + distillation were simulated by Aspen Plus. The energy consumptions for the solvent-based and salting-out-based processes were compared. The salting-out + distillation process turned out to be more energy-saving than the solvent extraction process.

5.
Chem Commun (Camb) ; 57(24): 3022-3025, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33624652

RESUMEN

Herein, small Co nanoparticles (NPs) encapsulated in N-doped double-shelled carbon nanocages grafted with thin carbon nanotubes (Co@CNTs@DSCNCs) were synthesized from yolk-shell bimetallic zeolitic imidazolate framework (BMZIF). For HER electrocatalysis, they exhibit higher activity (η10 = 214 mV) and more favorable kinetics than Co@CNTs@PC (PC = porous carbon) with thick CNTs and large Co NPs derived from solid BMZIF cubes.

6.
ACS Appl Mater Interfaces ; 11(50): 47003-47007, 2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31746190

RESUMEN

Flexible perovskite solar cells (F-PSCs) have been developing fast with the power conversion efficiency (PCE) exceeding 19%. However, aiming at the high-efficiency F-PSCs, to get a desired perovskite morphology before and after glass-supportive device transfer is still a challenge. Herein, we thoroughly investigated the effect of adhesive materials of substrates on the perovskite film and the solar cell performance and developed a nondestructive F-PSC transfer method by introducing a double-side tape/protective film/epoxy binder. This nondestructive transfer strategy leads to a uniform morphology of perovskites, even after transfer process, yielding an enhanced PCE up to 16.55%.

7.
J Environ Manage ; 129: 577-85, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24029461

RESUMEN

Low impact development (LID) is generally regarded as a more sustainable solution for urban stormwater management than conventional urban drainage systems. However, its effects on urban flooding at a scale of urban drainage systems have not been fully understood particularly when different rainfall characteristics are considered. In this paper, using an urbanizing catchment in China as a case study, the effects of three LID techniques (swale, permeable pavement and green roof) on urban flooding are analyzed and compared with the conventional drainage system design. A range of storm events with different rainfall amounts, durations and locations of peak intensity are considered for holistic assessment of the LID techniques. The effects are measured by the total flood volume reduction during a storm event compared to the conventional drainage system design. The results obtained indicate that all three LID scenarios are more effective in flood reduction during heavier and shorter storm events. Their performance, however, varies significantly according to the location of peak intensity. That is, swales perform best during a storm event with an early peak, permeable pavements perform best with a middle peak, and green roofs perform best with a late peak, respectively. The trends of flood reduction can be explained using a newly proposed water balance method, i.e., by comparing the effective storage depth of the LID designs with the accumulative rainfall amounts at the beginning and end of flooding in the conventional drainage system. This paper provides an insight into the performance of LID designs under different rainfall characteristics, which is essential for effective urban flood management.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Industria de la Construcción/métodos , Materiales de Construcción/análisis , Inundaciones , Lluvia , China , Ciudades , Simulación por Computador , Hidrología , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA