Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 320: 124629, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38865891

RESUMEN

Herein, Nitrogen-doped graphyne/porous g-C3N4 composites are firstly in-situ synthesized via the ultrasound vibration of CaC2, triazine, and porous g-C3N4 in absolute ethanol. A variety of characterizations are performed to investigate the morphology, microstructure, composition, and electrical/optical features of the obtained composites, such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and so forth. It is found that N-doped graphyne with flexible folds lamellar structure is intimately attached to flake g-C3N4 in the as-prepared composites. An enlargement of 1.68 and 1.44 folds for the photocatalytic degradation of levofloxacin, rhodamine B, Methylene blue, and Tetracycline is realized by N-doped graphyne/g-C3N4 in comparison with that of pristine g-C3N4, respectively. In addition, the highest NH3 production rate attains 1.71 mmol⋅gcat-1⋅h-1 for N-doped graphyne/g-C3N4, which is 5.89 times larger than that of g-C3N4 (0.29 mmol⋅gcat-1⋅h-1). The improved mechanism of photocatalysis including higher photo-response and carrier separation rate is verified by transient photo-current, transient photo-potential, Mott-Schottky plots, Tafel plots, electrochemical impedance spectroscopy, turn-over frequency, photoluminescence spectra, and UV-vis diffuse absorption spectra, etc. Overall, the current study shows that N-doped graphyne synthesized from CaC2 and triazine is a useful decoration to modulate the photocatalytic features of g-C3N4, which can also be widely extended for in-situ modification of other photocatalysts.

2.
Huan Jing Ke Xue ; 45(6): 3260-3269, 2024 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-38897749

RESUMEN

It is important to study the impact of land use change on terrestrial ecosystem carbon stocks in urban agglomerations for the optimization of land use structure and sustainable development in urban agglomerations. Based on the patch-generating land use simulation (PLUS) model and integrated valuation of ecosystem services and trade-offs (InVEST) model, a simulation was developed that predicted the land use change and carbon stock of the Guanzhong Plain urban agglomeration in 2040 under different scenarios and further analyzed the impact of land use change on carbon stock. The results showed that:① The land use types of the Guanzhong Plain urban agglomeration were mainly cultivated land, forest land, and grassland, which accounted for more than 90 % of the total study area. ② From 2000 to 2020, the carbon stock in the Guanzhong Plain showed a continuous downward trend, with cropland, woodland, and grassland being the main sources of carbon stock in the Guanzhong Plain, and the overall carbon stock declined by 15.12×106 t, with the spatial distribution presenting the distribution characteristics of "high in the north and south and low in the middle." ③ By 2040, the carbon stock would decrease the most under the urban development scenario, with a total reduction of 27.08×106 t, and the least under the ecological development scenario, with a total reduction of 4.14×106t. The research results can provide data support for the high-quality development and rational land use planning of the Guanzhong Plain urban agglomeration.

3.
J Nanobiotechnology ; 22(1): 325, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858695

RESUMEN

BACKGROUND: Osteoarthritis (OA) is an aging-related degenerative joint disorder marked by joint discomfort and rigidity. Senescent chondrocytes release pro-inflammatory cytokines and extracellular matrix-degrading proteins, creating an inflammatory microenvironment that hinders chondrogenesis and accelerates matrix degradation. Targeting of senescent chondrocytes may be a promising approach for the treatment of OA. Herein, we describe the engineering of an injectable peptide-hydrogel conjugating a stem cell-homing peptide PFSSTKT for carrying plasmid DNA-laden nanoparticles and Tanshinon IIA (pPNP + TIIA@PFS) that was designed to attenuate OA progression by improving the senescent microenvironment and fostering cartilage regeneration. RESULTS: Specifically, pPNP + TIIA@PFS elevates the concentration of the anti-aging protein Klotho and blocks the transmission of senescence signals to adjacent healthy chondrocytes, significantly mitigating chondrocyte senescence and enhancing cartilage integrity. Additionally, pPNP + TIIA@PFS recruit bone mesenchymal stem cells and directs their subsequent differentiation into chondrocytes, achieving satisfactory chondrogenesis. In surgically induced OA model rats, the application of pPNP + TIIA@PFS results in reduced osteophyte formation and attenuation of articular cartilage degeneration. CONCLUSIONS: Overall, this study introduces a novel approach for the alleviation of OA progression, offering a foundation for potential clinical translation in OA therapy.


Asunto(s)
Condrocitos , Condrogénesis , Glucuronidasa , Hidrogeles , Proteínas Klotho , Células Madre Mesenquimatosas , Osteoartritis , Plásmidos , Ratas Sprague-Dawley , Animales , Osteoartritis/terapia , Osteoartritis/tratamiento farmacológico , Hidrogeles/química , Ratas , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Glucuronidasa/metabolismo , Glucuronidasa/farmacología , Condrogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Masculino , Cartílago Articular/efectos de los fármacos , Cartílago Articular/metabolismo , Progresión de la Enfermedad , Nanopartículas/química , Humanos , ADN , Senescencia Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos
4.
Neurosurgery ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38842326

RESUMEN

BACKGROUND AND OBJECTIVES: Cavernous malformations (CMs) occurring in the cranial nerve (CN) are extremely rare, and there is currently no comprehensive review on CN CMs, leading to a lack of sufficient understanding of CN CMs. We aimed to systematically review all published CN CM cases; summarize the epidemiology, clinical manifestations, treatment, and prognosis of CN CMs; and identify factors influencing the prognosis of CN CMs. METHODS: This systematic review identified all cases potentially diagnosed with CN CM through a systematic search of PubMed, SCOPUS, Web of Science, and Cochrane databases. This represents the most comprehensive systematic review to date. We classified CN CMs based on their anatomic origins. Patient characteristics, disease manifestations, treatment approaches, and prognosis were summarized descriptively. Further analysis was conducted to identify factors influencing the prognosis of CN CMs. RESULTS: The final analysis included 108 articles (127 individual patient cases). The optic nerve (49/128, 38.3%) is the most commonly affected nerve. Notably, CN CMs can be categorized into 3 types: Intraneural, Perineural, and Extraneural. Preoperative nerve function status and novel classification were associated with the prognosis of CN CMs (P = .001; P < .001). The postoperative neurological deterioration rate for the Intraneural type was 19/37 (51.4%); for the Extraneural type, it was 13/69 (18.8%); and for the Perineural type, it was 1/22 (4.5%) (P < .001). CONCLUSION: We reviewed all the published CN CMs to date, offering a comprehensive description of CN CMs for the first time and identifying prognostic factors. The classification of CN CMs proposed in this study could serve as guidance for the selection of intraoperative treatment regimens. The findings of this systematic review are expected to provide a foundation for clinical decision-making in this crucial rare disease and lay the groundwork for developing relevant clinical guidelines.

5.
Org Lett ; 26(22): 4600-4605, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38780900

RESUMEN

A novel three-component coupling reaction of ethynylbenziodoxolones (EBXs) with CO2 and amines has been achieved via silver catalysis, thereby providing an efficient method for the construction of a range of structurally diverse and valuable O-ß-oxoalkyl carbamates. The transformation proceeds under mild reaction conditions and exhibits a wide substrate scope and good functional group compatibility. In addition, this strategy could be extended to the synthesis of α-acyloxyketones using carboxylic acids as the nucleophiles to react with EBXs.

6.
Dalton Trans ; 53(23): 9750-9762, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38780236

RESUMEN

Herein, a series of N-doped Ti3C2/porous g-C3N4 composites are ultrasonically prepared from N-doped Ti3C2 and porous g-C3N4 under N2 atmosphere. The structure, morphology, and optical characteristics of the as-prepared composites are characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectroscopy, etc. Moreover, photocatalytic measurements show that N-doped Ti3C2 is an excellent modifier for porous g-C3N4 to heighten its photocatalytic activity. Only 44.1% of rhodamine B can be degraded by the photocatalysis of pristine porous g-C3N4, while the photocatalytic degradation ratio of rhodamine B can reach up to 97.5% for the optimal N-doped Ti3C2 loading composites under visible light for 15 min. Moreover, the photocatalytic tests of N2 fixation confirm that the optimal composites show the highest production yield of NH4+ (11.8 µmol gcat-1 h-1), which is 2.11-folds more than that of porous g-C3N4 (5.6 µmol gcat-1 h-1). The reinforced photocatalytic properties are revealed to profit from the more photogenerated electrons and holes' separation, higher ability for light response, and more abundant active sites. This work develops the route for boosting the photocatalytic properties of porous g-C3N4 with N-doped Ti3C2.

7.
Physiol Meas ; 45(5)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38697205

RESUMEN

Objectives.The purpose of this study is to investigate the age dependence of bilateral frontal electroencephalogram (EEG) coupling characteristics, and find potential age-independent depth of anesthesia monitoring indicators for the elderlies.Approach.We recorded bilateral forehead EEG data from 41 patients (ranged in 19-82 years old), and separated into three age groups: 18-40 years (n= 12); 40-65 years (n= 14), >65 years (n= 15). All these patients underwent desflurane maintained general anesthesia (GA). We analyzed the age-related EEG spectra, phase amplitude coupling (PAC), coherence and phase lag index (PLI) of EEG data in the states of awake, GA, and recovery.Main results.The frontal alpha power shows age dependence in the state of GA maintained by desflurane. Modulation index in slow oscillation-alpha and delta-alpha bands showed age dependence and state dependence in varying degrees, the PAC pattern also became less pronounced with increasing age. In the awake state, the coherence in delta, theta and alpha frequency bands were all significantly higher in the >65 years age group than in the 18-40 years age group (p< 0.05 for three frequency bands). The coherence in alpha-band was significantly enhanced in all age groups in GA (p< 0.01) and then decreased in recovery state. Notably, the PLI in the alpha band was able to significantly distinguish the three states of awake, GA and recovery (p< 0.01) and the results of PLI in delta and theta frequency bands had similar changes to those of coherence.Significance.We found the EEG coupling and synchronization between bilateral forehead are age-dependent. The PAC, coherence and PLI portray this age-dependence. The PLI and coherence based on bilateral frontal EEG functional connectivity measures and PAC based on frontal single-channel are closely associated with anesthesia-induced unconsciousness.


Asunto(s)
Desflurano , Electroencefalografía , Humanos , Desflurano/farmacología , Adulto , Persona de Mediana Edad , Anciano , Electroencefalografía/efectos de los fármacos , Adulto Joven , Masculino , Femenino , Anciano de 80 o más Años , Adolescente , Envejecimiento/fisiología , Envejecimiento/efectos de los fármacos , Lóbulo Frontal/efectos de los fármacos , Lóbulo Frontal/fisiología , Isoflurano/análogos & derivados , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Anestesia General
8.
Org Lett ; 26(17): 3530-3535, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38656165

RESUMEN

State-of-the-art strategies for alkene-hydroxyazidation, which yield a mixture of ß-azido alcohol and ß-azido peroxide, must rely on phosphine reagents to improve the chemoselectivity. To overcome the above problems, we present a photochemical hydroxyazidation of alkenes via Mn-mediated ligand-to-metal charge transfer (LMCT) in O2, which activates N3- to •N3 and incorporates O2 to be used as an oxygen source in the hydroxyazidation products. Broad alkene range and step-economy chemistry for the hydroxyazidation transformation were also demonstrated.

9.
Front Microbiol ; 15: 1378029, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38655089

RESUMEN

Campylobacter jejuni (C. jejuni) is a common pathogen that often causes diarrhea, loss of appetite, and even enteritis in domestic cats, affecting their growth and development, especially in kittens under 6 months of age. Oral passive immunization with chicken yolk antibody Y has been proved effective for the treatment of gastrointestinal pathogen infections due to its high specificity. In this study, C. jejuni was isolated from diarrheal cat feces, and the specific egg yolk antibody Y against C. jejuni was demonstrated to effectively inhibit its proliferation in vitro experiments. To evaluate the effect of anti-C. jejuni IgY, the mouse C. jejuni infection model was established and it was found that IgY could alleviate C. jejuni-induced clinical symptoms. Consistent with these results, the reduction of pro-inflammatory factors and intestinal colonization by C. jejuni in the IgY-treated groups, especially in the high dose group. We then evaluated the protective effect of IgY on young Ragdoll cats infected with C. jejuni. This specific antibody reduced the rate of feline diarrhea, protected the growth of young cats, inhibited systemic inflammatory hyperactivation, and increased fecal short-chain fatty acid concentrations. Notably, IgY may have a protective role by changing intestinal amino acid metabolism and affecting C. jejuni chemotaxis. Collectively, specific IgY is a promising therapeutic strategy for C. jejuni-induced cat diarrhea.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124331, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669983

RESUMEN

Herein, a collection of novel N-Ti3C2/BiOClxBr1-x composites are fabricated via a simple in-situ sonochemical process. Not only the preparation method for N-Ti3C2 but also the photocatalytic system of N-Ti3C2/BiOClxBr1-x are firstly developed. Multiple characterizations jointly demonstrate the successful fabrication of the composites. Compared to that of BiOClxBr1-x, the maximum improvements of 1.16, 1.25 and 1.26 folds are severally confirmed for the photocatalytic degradation of levofloxacin, Rhodamine B, and methylene blue over N-Ti3C2/BiOClxBr1-x composites. In addition, through radicals trapping tests, the primary active species in photocatalytic degradation process are verified to be O2-. Moreover, N-Ti3C2/BiOClxBr1-x composites also exhibit 1.18 and 1.14 times enhancements for NH3 production compared with that of BiOClxBr1-x with or without the presence of methanol, respectively. In addition, the maximum improvements of photo-current and photo-potential for BiOClxBr1-x are 1.29 and 1.86 folds with the introduction of N-Ti3C2, respectively. The enhanced photocatalytic activity of N-Ti3C2/BiOClxBr1-x composites is owing to the heightened light absorption, increased specific surface area, and accelerated separation of photoinduced carriers. Additionally, the stable photocatalytic properties of N-Ti3C2/BiOClxBr1-x are confirmed by three photocatalytic recycle tests on pollutant degradation and nitrogen reduction combined with X-ray diffraction patterns before and after three recycles. This study suggests that N-Ti3C2 is an efficient ornamentation for boosting photocatalytic activity ofBiOClxBr1-x, which can also be expanded as a promising modifier for other semiconductors.

11.
Artículo en Inglés | MEDLINE | ID: mdl-38656108

RESUMEN

Topological insulators (TIs) with spin-momentum-locked surface states and considerable spin-to-charge conversion (SCC) efficiency are ideal substitutes for the nonmagnetic layer in the traditional ferromagnetic/nonmagnetic (FM/NM) spintronic terahertz (THz) emitters. Here, the TI/ferrimagnetic structure as an effective polarization tunable THz source is verified by terahertz emission spectroscopy. The emitted THz electric field can be separated into two THz components utilizing their opposite symmetry on pump polarization and the magnetic field. TI not only emits a THz electric field via the linear photogalvanic effect (LPGE) but also serves as the medium of SCC via the inverse Edelstein effect (IEE) in the heterostructure. In addition, the amplitude and polarity of the SCC component can be efficiently manipulated by temperature in our ferrimagnetic TbFeCo layer compared with Co or Fe. Once these two THz components are delicately set orthogonally, an elliptical THz wave is generated by the intrinsic phase difference at the THz frequency range. The feasible control of its polarization and chirality is demonstrated by three means: pump polarization, magnetic field, and temperature. These appealing observations may pave the way for the development of elliptical THz wave emitters and polarization-sensitive THz spectroscopy.

12.
Se Pu ; 42(4): 360-367, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38566425

RESUMEN

The macroporous anion exchange chromatographic medium (FastSep-PAA) was prepared through grafting polyallylamine (PAA) onto polyacrylate macroporous microspheres (FastSep-epoxy). The effects of the synthesis conditions, including the PAA concentration, reaction time, and reaction solution pH, on the ion exchange (IC) of the medium were investigated in detail. When the PAA concentration, reaction time, and reaction solution pH were increased, the IC of the medium increased, and optimal synthesis conditions were then selected in combination with changes of protein binding capacity. A scanning electron microscope was used to examine the surface morphology of the medium. The medium possessed high pore connectivity. Furthermore, the pore structure of the medium was preserved after the grafting of PAA onto the macroporous microspheres. This finding demonstrates that the density of the PAA ligands does not appear to have any discernible impact on the structure of the medium; that is, no difference in the structure of the medium is observed before and after the grafting of PAA onto the microspheres. The pore size and pore-size distribution of the medium before and after grafting were determined by mercury intrusion porosimetry and the nitrogen adsorption method to investigate the relationship between pore size (measured in the range of 300-1000 nm) and protein adsorption. When the pore size of the medium was increased, its protein binding capacity did not exhibit any substantial decrease. An increase in pore size may hasten the mass transfer of proteins within the medium. Among the media prepared, that with a pore size of 400 nm exhibited the highest dynamic-binding capacity (DBC: 70.3 g/L at 126 cm/h). The large specific surface area of the medium and its increased number of protein adsorption sites appeared to positively influence its DBC. When the flow rate was increased, the protein DBC decreased in media with original pore sizes of less than 700 nm. In the case of the medium with an original pore size of 1000 nm, the protein DBC was independent of the flow rate. The protein DBC decreased by 3.5% when the flow rate was increased from 126 to 628 cm/h. In addition, the protein DBC was maintained at 57.7 g/L even when the flow velocity was 628 cm/h. This finding reveals that the diffusion rate of protein molecules at this pore size is less restricted and that the prepared medium has excellent mass-transfer performance. These results confirm that the macroporous polymer anion exchange chromatographic medium developed in this study has great potential for the high-throughput separation of proteins.


Asunto(s)
Poliaminas , Proteínas , Cromatografía por Intercambio Iónico/métodos , Adsorción , Proteínas/química , Aniones
13.
J Transl Med ; 22(1): 169, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368407

RESUMEN

BACKGROUND: Adenomatous polyps (APs) with inflammation are risk factors for colorectal cancer. However, the role of inflammation-related gut microbiota in promoting the progression of APs is unknown. METHODS: Sequencing of the 16S rRNA gene was conducted to identify characteristic bacteria in AP tissues and normal mucosa. Then, the roles of inflammation-related bacteria were clarified by Spearman correlation analysis. Furthermore, colorectal HT-29 cells, normal colon NCM460 cells, and azoxymethane-treated mice were used to investigate the effects of the characteristic bacteria on progression of APs. RESULTS: The expression levels of inflammation-related markers (diamine oxidase, D-lactate, C-reactive protein, tumor necrosis factor-α, interleukin-6 and interleukin-1ß) were increased, whereas the expression levels of anti-inflammatory factors (interleukin-4 and interleukin-10) were significantly decreased in AP patients as compared to healthy controls. Solobacterium moorei (S. moorei) was enriched in AP tissues and fecal samples, and significantly positively correlated with serum inflammation-related markers. In vitro, S. moorei preferentially attached to HT-29 cells and stimulated cell proliferation and production of pro-inflammatory factors. In vivo, the incidence of intestinal dysplasia was significantly increased in the S. moorei group. Gavage of mice with S. moorei upregulated production of pro-inflammatory factors, suppressed proliferation of CD4+ and CD8+cells, and disrupted the integrity of the intestinal barrier, thereby accelerating progression of APs. CONCLUSIONS: S. moorei accelerated the progression of AP in mice via activation of the NF-κB signaling pathway, chronic low-grade inflammation, and intestinal barrier disruption. Targeted reduction of S. moorei presents a potential strategy to prevent the progression of APs.


Asunto(s)
Pólipos Adenomatosos , Firmicutes , Humanos , Animales , Ratones , ARN Ribosómico 16S/genética , Inflamación/complicaciones , Pólipos Adenomatosos/complicaciones
14.
Theriogenology ; 218: 254-266, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38367334

RESUMEN

Bloom (BLM) helicase plays an important role in DNA replication and the maintenance of genome integrity. BLM protein deficiency, which plays a vital role in the sperm-egg union and germ-cell development during reproduction, can lead to severe DNA damage in goats. However, the effect of BLM protein deficiency on goat litter size has not been reported. Herein, we studied the association between the genetic variation in the BLM gene and the number of kids per litter in Guizhou white goats. We explored differences in the expression of the BLM protein in the follicles of single and multi-kid nanny goats. We also analyzed the effects of dysregulated BLM gene expression on the proliferation and apoptosis of ovarian granulosa cells and the expression of genes related to follicle development in goats. Five single nucleotide polymorphism (SNP) loci, including the non-synonymous mutations g.38179 A > G, g.40626 G > C and g.89621 T > G; the intron synonymous mutation g.56961 G > A and the exon synonymous mutation g.65796 C > T were found in the BLM gene. All SNPs loci were in Hardy-Weinberg equilibrium, and correlation analysis showed that the g.65796 C > T and g.89621 T > G loci polymorphism was strongly associated with litter size in the first three litters (P < 0.05). The diplogenotype Hap 2/2 (AAGGAACCTT) showed no significant difference in litter size between different births, indicating that the diploid genotype is stable in different litter sizes. Bioinformatics analysis showed that three non-synonymous mutation loci (p.T488A, p.A662S, and p.S1373A) could affect BLM protein stability, and mutations in p.T488A and p.S1373A led to changes in amino acid polarity and associated interactions. qPCR results showed that the expression level of the BLM gene in the uterus and ovaries of TT genotype nanny goats was significantly higher than that of GG genotype nanny goats. Indirect immunofluorescence assay (IF) showed that the BLM protein was significantly overexpressed in both the primordial and growing follicles of nanny goats with multiple kids (P < 0.01). Disrupting BLM gene expression in the ovarian granulosa cells down-regulated the expression of the Cyp19A1 gene. It also significantly inhibited the proliferation of follicles and induces early apoptosis of the granulosa cells. These findings confirm that polymorphism in the BLM gene is closely related to the littering traits of Guizhou white goats, and it affects the reproductive performance of nanny goats by regulating the development of the oocytes and granulosa cells. This work provides new evidence on the regulatory effect of the BLM gene on the litter size of nanny goats.


Asunto(s)
Enfermedades de las Cabras , Deficiencia de Proteína , Masculino , Embarazo , Femenino , Animales , Ovario , Cabras/genética , Semen , Tamaño de la Camada/genética , Polimorfismo de Nucleótido Simple , Genotipo , Deficiencia de Proteína/veterinaria
15.
Hepatol Commun ; 8(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407327

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD), a replacement of the nomenclature employed for NAFLD, is the most prevalent chronic liver disease worldwide. Despite its high global prevalence, NAFLD is often under-recognized due to the absence of reliable noninvasive biomarkers for diagnosis and staging. Growing evidence suggests that the gut microbiome plays a significant role in the occurrence and progression of NAFLD by causing immune dysregulation and metabolic alterations due to gut dysbiosis. The rapid advancement of sequencing tools and metabolomics has enabled the identification of alterations in microbiome signatures and gut microbiota-derived metabolite profiles in numerous clinical studies related to NAFLD. Overall, these studies have shown a decrease in α-diversity and changes in gut microbiota abundance, characterized by increased levels of Escherichia and Prevotella, and decreased levels of Akkermansia muciniphila and Faecalibacterium in patients with NAFLD. Furthermore, bile acids, short-chain fatty acids, trimethylamine N-oxide, and tryptophan metabolites are believed to be closely associated with the onset and progression of NAFLD. In this review, we provide novel insights into the vital role of gut microbiome in the pathogenesis of NAFLD. Specifically, we summarize the major classes of gut microbiota and metabolic biomarkers in NAFLD, thereby highlighting the links between specific bacterial species and certain gut microbiota-derived metabolites in patients with NAFLD.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Metabolómica , Ácidos y Sales Biliares
16.
ACS Nano ; 18(3): 2261-2278, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38207332

RESUMEN

Sepsis, which is the most severe clinical manifestation of acute infection and has a mortality rate higher than that of cancer, represents a significant global public health burden. Persistent methicillin-resistant Staphylococcus aureus (MRSA) infection and further host immune paralysis are the leading causes of sepsis-associated death, but limited clinical interventions that target sepsis have failed to effectively restore immune homeostasis to enable complete eradication of MRSA. To restimulate anti-MRSA innate immunity, we developed CRV peptide-modified lipid nanoparticles (CRV/LNP-RNAs) for transient in situ programming of macrophages (MΦs). The CRV/LNP-RNAs enabled the delivery of MRSA-targeted chimeric antigen receptor (CAR) mRNA (SasA-CAR mRNA) and CASP11 (a key MRSA intracellular evasion target) siRNA to MΦs in situ, yielding CAR-MΦs with boosted bactericidal potency. Specifically, our results demonstrated that the engineered MΦs could efficiently phagocytose and digest MRSA intracellularly, preventing immune evasion by the "superbug" MRSA. Our findings highlight the potential of nanoparticle-enabled in vivo generation of CAR-MΦs as a therapeutic platform for multidrug-resistant (MDR) bacterial infections and should be confirmed in clinical trials.


Asunto(s)
Liposomas , Staphylococcus aureus Resistente a Meticilina , Nanopartículas , Receptores Quiméricos de Antígenos , Sepsis , Infecciones Estafilocócicas , Animales , Ratones , Receptores Quiméricos de Antígenos/uso terapéutico , Infecciones Estafilocócicas/tratamiento farmacológico , ARN Mensajero , Antibacterianos/farmacología , Macrófagos , Sepsis/tratamiento farmacológico , Lípidos/farmacología
17.
Huan Jing Ke Xue ; 45(1): 343-353, 2024 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-38216484

RESUMEN

Since the 1990s, a large area of sloping farmland in a purple soil hilly region of southwest China was converted into an orchard to prevent soil erosion, increase soil fertility, and elevate economic benefits for farmers. In order to explore the spatial distribution of soil carbon (C) and nitrogen (N) fractions on the slope of returning arable lands to citrus orchards in purple soil hilly areas, a soil sampling event was carried out in a citrus orchard at the Yanting Agro-ecological Experimental Station of Purple Soil, Chinese Academy of Sciences, to examine the differences in soil C and N fractions and their influencing factors. The results showed that the slope position had significant effects on the contents of soil total nitrogen (TN), nitrate nitrogen (NO3--N), and dissolved organic carbon (DOC) (P < 0.05), but the effects were not obvious regarding the total organic carbon (SOC) and ammonia nitrogen (NH4+-N) of the soil (P > 0.05). For topsoil (0-30 cm), the variation trend of soil NO3--N content along the slope was upper slope < middle slope < lower slope, whereas the TN and DOC contents along the slope exhibited the trend of upper slope > middle slope > lower slope. The contents of soil C and N in each slope position generally showed a downward trend with increasing soil depth (0-30 cm). The contents of soil TN, SOC, NO3--N, and DOC were significantly affected by soil depth (P < 0.05). The TN storage (0-30 cm) significantly decreased from the top to the bottom within the soil slope, with a value of 2.37, 1.89, and 1.62 t·hm-2 (reported as N) for the upper slope, middle slope, and lower slope, respectively. There was no significant difference in SOC reserves along the slope, with a range from 56.12 to 58.48 t·hm-2 (reported as C). Our results provide scientific basis for understanding the spatial distribution of soil nutrients of the restored farmland in purple soil hilly areas. Our research suggests that the spatial distribution of soil carbon and nitrogen storage should not be ignored when predicting the response of soil nutrients to land use change.

18.
J Biophotonics ; 17(1): e202300278, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717259

RESUMEN

In multi-distance coherent diffraction imaging, the task of distance calculation for multi-diffraction images is cumbersome. The information features are hard-to-extract and the region of interest extraction algorithms are difficult to be adopted. A universal salient feature region selection algorithm by using the area with the highest density of corners is proposed to extract the most representative feature region. In addition, equally spaced recording modes and mismatched diffraction distances will result in system noise and destroy image quality. The polydirectional maximum gradient is offered as a sharpness criterion to weigh a quantitative feature for the final pattern. A fast, sensitive, and high-accuracy autofocusing and sample reconstruction can be achieved using only a small number of images while ensuring that morphological properties and quantification of the reconstructions are not compromised. The proposed method is promising for biological and medical dynamic observations for computational imaging systems.


Asunto(s)
Algoritmos , Diagnóstico por Imagen
19.
Dalton Trans ; 53(3): 917-931, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38105741

RESUMEN

In this work, N-graphyne is in situ coupled with BiOCl0.5Br0.5via a facile one-step sonochemical method. To our knowledge, both the synthesis strategy for BiOCl0.5Br0.5 and the N-graphyne/BiOCl0.5Br0.5 photocatalytic system are new developments. A collection of characterization methods is adopted to detect the morphologies, structures, and electronic and optical properties. The results demonstrate that wrinkle-like N-graphyne nanosheets successfully enwind around or on flower-like BiOCl0.5Br0.5 microspheres, which are regularly assembled by BiOCl0.5Br0.5 nanosheets. Compared with pristine BiOCl0.5Br0.5, N-graphyne/BiOCl0.5Br0.5 composites exhibit superior adsorption capacity and visible-light-driven photocatalytic degradation of levofloxacin. In particular, the optimal N-graphyne amount for ameliorating the photocatalytic performance of BiOCl0.5Br0.5 is ascertained. In addition, the good stable performance for photocatalysis is confirmed by four cycling experiments. The dominant active species is confirmed to be O2˙- during photodegradation. The improved photocatalytic activity is attributed to the enhanced visible light response and the accelerated transfer/separation of photogenerated carriers by N-graphyne, which are verified using UV-vis absorption spectra, photocurrents, photopotentials, Nyquist plots, and Mott-Schottky curves. This study develops a new perspective for the synthesis and modification of BiOX solid solution, which can be used as an efficient photocatalyst.

20.
Bioengineering (Basel) ; 10(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38135944

RESUMEN

The emergence of modern prosthetics controlled by bio-signals has been facilitated by AI and microchip technology innovations. AI algorithms are trained using sEMG produced by muscles during contractions. The data acquisition procedure may result in discomfort and fatigue, particularly for amputees. Furthermore, prosthetic companies restrict sEMG signal exchange, limiting data-driven research and reproducibility. GANs present a viable solution to the aforementioned concerns. GANs can generate high-quality sEMG, which can be utilised for data augmentation, decrease the training time required by prosthetic users, enhance classification accuracy and ensure research reproducibility. This research proposes the utilisation of a one-dimensional deep convolutional GAN (1DDCGAN) to generate the sEMG of hand gestures. This approach involves the incorporation of dynamic time wrapping, fast Fourier transform and wavelets as discriminator inputs. Two datasets were utilised to validate the methodology, where five windows and increments were utilised to extract features to evaluate the synthesised sEMG quality. In addition to the traditional classification and augmentation metrics, two novel metrics-the Mantel test and the classifier two-sample test-were used for evaluation. The 1DDCGAN preserved the inter-feature correlations and generated high-quality signals, which resembled the original data. Additionally, the classification accuracy improved by an average of 1.21-5%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...