Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Adv Sci (Weinh) ; 11(16): e2308009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38381090

RESUMEN

Many patients with hepatocellular carcinoma (HCC) respond poorly to radiotherapy despite remarkable advances in treatment. A deeper insight into the mechanism of sensitivity of HCC to this therapy is urgently required. It is demonstrated that RECQL4 is upregulated in the malignant cells of patients with HCC. Elevated RECQL4 levels reduce the sensitivity of HCC to radiotherapy by repairing radiation-induced double-stranded DNA (dsDNA) fragments. Mechanistically, the inhibitory effect of RECQL4 on radiotherapy is due to the reduced recruitment of dendritic cells and CD8+ T cells in the tumor microenvironment (TME). RECQL4 disrupts the radiation-induced transformation of the TME into a tumoricidal niche by inhibiting the cGAS-STING pathway in dendritic cells. Knocking out STING in dendritic cells can block the impact of RECQL4 on HCC radiosensitivity. Notably, high RECQL4 expressions in HCC is significantly associated with poor prognosis in multiple independent cohorts. In conclusion, this study highlights how HCC-derived RECQL4 disrupts cGAS-STING pathway activation in dendritic cells through DNA repair, thus reducing the radiosensitivity of HCC. These findings provide new perspectives on the clinical treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de la Membrana , Nucleotidiltransferasas , RecQ Helicasas , Transducción de Señal , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/radioterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/inmunología , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Animales , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Microambiente Tumoral/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Modelos Animales de Enfermedad , Tolerancia a Radiación/genética , Línea Celular Tumoral
2.
Iran J Public Health ; 52(7): 1476-1486, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37593506

RESUMEN

Background: The drug resistance of chemotherapeutic agents leads to unsatisfactory survival rates for cervical cancer (CC) patients. We aimed to explore the effect of FOXP2 on the sensitivity of CC cells to cisplatin (DDP) and its mechanism in Changde, China in 2018. Methods: A Total of 6 cervical cancer tissue samples including 3 patients with cisplatin sensitivity and 3 patients with cisplatin resistance, who received DDP-based treatment, were obtained from Changde First People's Hospital, Changde City during 2021, and FOXP2 level was detected by Western blot. The expression levels of FOXP2 and c-MET (hepatocyte growth factor receptor, c-MET) in cells were determined by q-PCR and Western blot analysis. The cell survival, apoptosis, and clone formation were analyzed by flow cytometry, MTT assay, or clone formation assay. Dual-luciferase reporter assays and Chromatin immunoprecipitation were applied to verify the regulation between FOXP2 and c-MET. Results: FOXP2 was downregulated in cisplatin-resistant cervical cancer tissues and cells compared with control. FOXP2 overexpression in SiHa/DDP cells inhibited cell proliferation and promoted cell apoptosis, whereas down-regulation of FOXP2 in SiHa cells had the opposite result. FOXP2 enhanced chemosensitive to DDP in CC cells. FOXP2 is negatively correlated with c-MET expression level in SiHa and SiHa/DDP cells. Mechanistically, FOXP2 binds to the promoter region of c-MET to regulate its expression in CC cells negatively. Overexpression of c-MET can attenuate the enhancement of DDP-induced apoptosis caused by FOXP2 overexpression. Conclusion: This is a novel study on the role of FOXP2 in promoting the DDP sensitivity of CC cells by inhibiting c-MET. The FOXP2/c-MET signaling axis uncovered in the present study may be a novel therapeutic target for the DDP therapy resistance of CC.

3.
Int J Radiat Oncol Biol Phys ; 117(4): 928-941, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37230431

RESUMEN

PURPOSE: Radiation therapy (RT) is indispensable for managing thoracic carcinomas. However, its application is limited by radiation-induced lung injury (RILI), one of the most common and fatal complications of thoracic RT. Nonetheless, the exact molecular mechanisms of RILI remain poorly understood. METHODS AND MATERIALS: To elucidate the underlying mechanisms, various knockout mouse strains were subjected to 16 Gy whole-thoracic RT. RILI was assessed by quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, histology, western blot, immunohistochemistry, and computed tomography examination. To perform further mechanistic studies on the signaling cascade during the RILI process, pulldown, chromatin immunoprecipitation assay, and rescue assays were conducted. RESULTS: We found that the cGAS-STING pathway was significantly upregulated after irradiation exposure in both the mouse models and clinical lung tissues. Knocking down either cGAS or STING led to attenuated inflammation and fibrosis in mouse lung tissues. NLRP3 is hardwired to the upstream DNA-sensing cGAS-STING pathway to trigger of the inflammasome and amplification of the inflammatory response. STING deficiency suppressed the expressions of the NLRP3 inflammasome and pyroptosis-pertinent components containing IL-1ß, IL-18, GSDMD-N, and cleaved caspase-1. Mechanistically, interferon regulatory factor 3, the essential transcription factor downstream of cGAS-STING, promoted the pyroptosis by transcriptionally activating NLRP3. Moreover, we found that RT triggered the release of self-dsDNA in the bronchoalveolar space, which is essential for the activation of cGAS-STING and the downstream NLRP3-mediated pyroptosis. Of note, Pulmozyme, an old drug for the management of cystic fibrosis, was revealed to have the potential to mitigate RILI by degrading extracellular dsDNA and then inhibiting the cGAS-STING-NLRP3 signaling pathway. CONCLUSIONS: These results delineated the crucial function of cGAS-STING as a key mediator of RILI and described a mechanism of pyroptosis linking cGAS-STING activation with the amplification of initial RILI. These findings indicate that the dsDNA-cGAS-STING-NLRP3 axis might be potentially amenable to therapeutic targeting for RILI.

4.
Transl Oncol ; 26: 101537, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36115075

RESUMEN

BACKGROUND: Our preclinical research reveals that radiotherapy (RT) promoted PD-L1 upregulation in tumor tissues and that higher PD-L1 after RT worsened the prognosis through immunosuppression. We sought to validate our experimental results in clinical cohorts and promote clinical application. PATIENTS AND METHODS: In cohort 1, formalin-fixed paraffin-embedded samples were obtained from 46 HCC patients, 23 of whom received preoperative RT and the other 23 received direct surgery. A prospectively collected database contained 122 HCC patients treated with liver RT were enrolled in cohort 2. Blood samples were taken a day before and two weeks after RT. Patients in cohort 2 were further divided into two groups, exploration (73 patients) and validation (49 patients) groups. RESULTS: In cohort 1, RT increased the expression of PD-L1 in tumor tissues (p = 0.001), and PD-L1 levels were associated with decreased cytotoxic T-cell infiltration and a trend toward poor prognosis (p = 0.14). Moreover, PD-L1 expression in tumor tissue positively correlated with soluble (s) PD-L1 in serum (R = 0.421, p = 0.046). Then, in cohort 2, we revealed RT increased sPD-L1 in serum (p < 0.001), which was associated with the number of circulating CD8+ T cells (R = -0.24, p = 0.036), indicating poor survival. Furthermore, patients with higher rate of sPD-L1 increase after RT have better treatment response (p < 0.001), PFS (p = 0.032) and OS (p = 0.045). CONCLUSION: Higher post-RT serum sPD-L1, which may potentiate immune suppression effects, indicates a poor prognosis for HCC patients treated with RT.

5.
Gut Microbes ; 14(1): 2119055, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36093568

RESUMEN

Studies of the gut-liver axis have enhanced our understanding of the pathophysiology of various liver diseases and the mechanisms underlying the regulation of the effectiveness of therapies. Radiotherapy (RT) is an important therapeutic option for patients with unresectable hepatocellular carcinoma (HCC). However, the role of the microbiome in regulating the response to RT remains unclear. The present study characterizes the gut microbiome of patients responsive or non-responsive to RT and investigates the molecular mechanisms underlying the differences in patient response. We collected fecal samples for 16S rRNA sequencing from a prospective longitudinal trial of 24 HCC patients receiving RT. We used fecal microbiota transplantation (FMT), flow cytometry, and transcriptome sequencing to explore the effects of dysbiosis on RT. We also examined the role of stimulator of interferon genes (STING) in RT-associated antitumor immune responses mediated by gut microbiota in STING- (Tmem173-/-) and cGAS-knockout (Mb21d1-/-) mouse models. We propose that primary resistance to RT could be attributed to the disruption of the gut microbiome. Mechanistically, gut microbiome dysbiosis impairs antitumor immune responses by suppressing antigen presentation and inhibiting effector T cell functions through the cGAS-STING-IFN-I pathway. Cyclic-di-AMP - an emerging second messenger of bacteria - may act as a STING agonist and is thus a potential target for the prediction and modulation of responses to RT in HCC patients. Our study highlights the therapeutic potential of modulating the gut microbiome in HCC patients receiving RT and provides a new strategy for the radiosensitization of liver cancer.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/radioterapia , Disbiosis/terapia , Inmunidad , Neoplasias Hepáticas/radioterapia , Ratones , Nucleotidiltransferasas/metabolismo , Estudios Prospectivos , ARN Ribosómico 16S/genética
6.
Front Immunol ; 13: 868480, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35572523

RESUMEN

Background: Although checkpoint blockade is a promising approach for the treatment of hepatocellular carcinoma (HCC), subsets of patients expected to show a response have not been established. As T cell-mediated tumor killing (TTK) is the fundamental principle of immune checkpoint inhibitor therapy, we established subtypes based on genes related to the sensitivity to TKK and evaluated their prognostic value for HCC immunotherapies. Methods: Genes regulating the sensitivity of tumor cells to T cell-mediated killing (referred to as GSTTKs) showing differential expression in HCC and correlations with prognosis were identified by high-throughput screening assays. Unsupervised clustering was applied to classify patients with HCC into subtypes based on the GSTTKs. The tumor microenvironment, metabolic properties, and genetic variation were compared among the subgroups. A scoring algorithm based on the prognostic GSTTKs, referred to as the TCscore, was developed, and its clinical and predictive value for the response to immunotherapy were evaluated. Results: In total, 18 out of 641 GSTTKs simultaneously showed differential expression in HCC and were correlated with prognosis. Based on the 18 GSTTKs, patients were clustered into two subgroups, which reflected distinct TTK patterns in HCC. Tumor-infiltrating immune cells, immune-related gene expression, glycolipid metabolism, somatic mutations, and signaling pathways differed between the two subgroups. The TCscore effectively distinguished between populations with different responses to chemotherapeutics or immunotherapy and overall survival. Conclusions: TTK patterns played a nonnegligible role in formation of TME diversity and metabolic complexity. Evaluating the TTK patterns of individual tumor will contribute to enhancing our cognition of TME characterization, reflects differences in the functionality of T cells in HCC and guiding more effective therapy strategies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/patología , Linfocitos T/patología , Microambiente Tumoral/genética
7.
Ann Transl Med ; 10(23): 1264, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36618794

RESUMEN

Background: Radiation pneumonitis (RP) is a type of toxicity commonly associated with thoracic radiation therapy. We sought to establish a random forest (RF) model and evaluate its ability to predict RP in patients with non-small cell lung cancer (NSCLC) receiving moderately hypofractionated radiotherapy (hypo-RT). Methods: A total of 106 patients with stage II-IVa NSCLC who received moderately hypofractionated helical tomotherapy (2.3-3.0 Gy/fraction) at Zhongshan Hospital were included. All enrolled patients were divided chronologically into the training (67 patients) and validation (39 patients) groups. Higher than or equal to grade 2 RP was defined as the end point. Logistic regression and RF models were established and compared using the receiver operating characteristic (ROC) and a confusion matrix in the training and validation groups. Results: The cumulative incidence of the end point was 25.4% and 17.9% in the training and validation groups, respectively. Logistic regression models were constructed by dosage parameters of total lungs, ipsilateral or contralateral lungs, respectively. ROC analysis revealed that the dosimetric factors of total lungs yielded a superior classification performance than did that of the ipsilateral or contralateral lungs [area under the curve (AUC) =0.920, AUC =0.701, and AUC =0.661, respectively]. Furthermore, the RF model yielded a better prediction capacity than did the traditional logistic model based on the dosimetric factors of the total lungs (accuracy: 88.06%; precision: 84.62%; sensitivity: 64.71%; specificity: 96.00%). Moreover, the RF identified mean lung dose [MLD; mean decrease gini (MDG) =5.74], V20 (MDG =4.62), and V35 (MDG =3.08) of total lungs as the most common primary differentiators of RP. Conclusions: Our RF model established based on the dosimetric parameters of the total lungs could accurately predict the RP risk in patients with NSCLC treated with moderately hypofractionated tomotherapy.

8.
J Oncol ; 2021: 2721261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34887921

RESUMEN

OBJECTIVE: To evaluate the efficacy and toxicity of hypofractionated radiotherapy (hypo-RT) for stage III non-small-cell lung cancer (NSCLC) in the Chinese population. METHODS: Eighty-six stage III NSCLC patients who received hypo-RT (60 Gy/20 fractions, BED = 78.00 Gy: 73 patients; 62.5 Gy/25 fractions, BED = 78.13 Gy: 13 patients) were recruited. Fifty-seven patients who received conventional radiotherapy (60 Gy/30 fractions, BED = 72.00 Gy) during the same period were enrolled as the control group. All hypo-RT treatments were conducted using image-guided technology. The efficacy and toxicity of the treatment were compared between the two groups. RESULTS: The median duration of follow-up was 23.0 months (range: 4.0-82.0 months). Univariate and multivariate analyses of all 143 stage III NSCLC patients revealed that hypo-RT was an independent factor for progression-free survival (PFS) and overall survival (OS). The median PFS and OS of hypo-RT were significantly higher than in the conventional RT group (PFS: 14.30, 11.00 months, p=0.035; OS: 43.30, 31.50 months, p=0.045). The incidence rates of symptomatic radiation pneumonitis and radiation esophagitis (≥grade 2) were 17.77% and 27.91%, respectively, in the hypo-RT group. Compared to the conventional radiation therapy group (22.81% and 19.30%, respectively), no significant differences were found between the two common side effects (p=0.662 and p=0.241, respectively). CONCLUSION: For Chinese stage III NSCLC patients, image-guided hypo-RT offers favorable prognosis, and the treatment toxicity was totally acceptable. This radiation modality deserves further prospective clinical trials.

9.
Front Oncol ; 11: 704220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367988

RESUMEN

Surgery remains cornerstone for the management of thymoma. Complete surgical resection (R0), is recognized as the constant and significant factor for prognosis. However, in locally advanced (Masaoka-Koga stages III-IVa) thymomas, achieving R0 resection remains challenging due to local-regional invasion of the disease. Induction treatment, with the aim of reducing bulky tumor mass, offers new strategy to facilitate totally surgical resection. Herein, we reviewed recent progress and provided a comprehensive overview of induction strategy in locally advance thymoma.

10.
Int J Radiat Oncol Biol Phys ; 111(2): 491-501, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34044094

RESUMEN

PURPOSE: Radiation therapy, which is vital for the treatment of primary liver cancer, comes with unavoidable liver injury, which limits its implementation. N6-methyladenosine (m6A) methylation is involved in many molecular functions. However, its role in radiation-induced liver diseases (RILD) remains unknown. Herein, we investigate the role of m6A methylation in RILD. METHODS AND MATERIALS: Methylated RNA-immunoprecipitation sequencing and RNA transcriptome sequencing were used to reveal the methylation pattern of human hepatic stellate cells (HSCs) exposed to irradiation. C3H/HeN mice and stimulator of interferon genes (STING)-deficient mice underwent x-ray irradiation of 24 Gy in 3 fractions. The m6A methylation of the high-mobility group box 1 (HMGB1) transcript was validated using methylated RNA immunoprecipitation, RNA immunoprecipitation, luciferase assays, and a messenger RNA decay assay. RESULTS: Human hepatic stellate cells showed significant differences in methylation patterns after 8 Gy of x-ray irradiation. Irradiation recruited AlkB homolog 5 (ALKBH5) to demethylate m6A residues in the 3' untranslated region of HMGB1, which resulted in the activation of STING-interferon regulatory factor 3 signaling. Changes in the transcription of the 3' untranslated region of HMGB1 occurred after the knockdown of ALKBH5, which were eliminated after m6A residue mutation. Strikingly, ALKBH5 deficiency or HMGB1 silencing both attenuated type I interferon production and decreased hepatocyte apoptosis. In vivo depletion of ALKBH5 abolished the upregulation of HMGB1-mediated STING signaling and decreased liver inflammation, which was consistent with STING-/- mice treated with irradiation. Notably, YTHDF2 (m6A reader protein) directly bound to HMGB1 m6A-modified sites and promoted its degradation. CONCLUSIONS: ALKBH5-dependent HMGB1 expression mediates STING-interferon regulatory factor 3 innate immune response in RILD.


Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB/fisiología , Proteína HMGB1/fisiología , Células Estrelladas Hepáticas/efectos de la radiación , Inmunidad Innata/efectos de la radiación , Hepatopatías/etiología , Neoplasias Hepáticas/radioterapia , Proteínas de la Membrana/fisiología , Animales , Proteína HMGB1/genética , Humanos , Interferón Tipo I/biosíntesis , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas de Unión al ARN/fisiología , Transducción de Señal/fisiología
11.
Int J Cancer ; 148(4): 921-931, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33113150

RESUMEN

Limited and inefficient treatment options exist for metastatic relapsed cervical cancer (MRCC), and there are currently no reliable indicators to guide therapeutic selection. We performed deep sequencing analyses targeting 322 cancer-related genes in plasma cell-free DNA and matched white blood cells in 173 serial blood samples from 82 locally advanced CC (LACC) or MRCC patients and when possible during treatment. We identified five notable nonsynonymous mutant genes (PIK3CA, BRAF, GNA11, FBXW7 and CDH1) in the MRCC samples as the metastatic relapse significantly mutated (MSG) genes and found that MRCC patients with any detectable MSG mutations had significantly shorter progression-free survival (PFS) (P = .005) and overall survival (OS) (P = .007) times than those without detectable MSG mutations. Additionally, analyses of matched prechemotherapy and postchemotherapy plasma revealed that a reduction in the number of MSG mutations after chemotherapy was significantly associated with partial remission (PR) and stable disease (SD) (P = .007). Among the patients included in the longitudinal tracking ctDNA analysis, an increase in MSG mutations was observed earlier in response to disease progression than radiological imaging. Our results outline the mutation profiles of MRCC. We show how longitudinal monitoring with ctDNA in liquid biopsy samples provides both predictive and prognostic information during treatment.


Asunto(s)
Biomarcadores de Tumor/genética , ADN Tumoral Circulante/genética , Mutación , Neoplasias del Cuello Uterino/genética , Adulto , Anciano , ADN Tumoral Circulante/sangre , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Estimación de Kaplan-Meier , Persona de Mediana Edad , Metástasis de la Neoplasia , Recurrencia Local de Neoplasia , Pronóstico , Terapia Recuperativa/métodos , Neoplasias del Cuello Uterino/sangre , Neoplasias del Cuello Uterino/tratamiento farmacológico , Adulto Joven
12.
Transl Oncol ; 14(1): 100876, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33007707

RESUMEN

BACKGROUND: Epirubicin is a first-line chemotherapeutic drug for the clinical treatment of diffuse large B cell lymphoma (DLBCL), but the overexpression of multidrug resistance (MDR) transporter proteins, especially P-glycoprotein (P-gp), renders epirubicin ineffective. Some studies reveal the potential role of melatonin in chemotherapeutic synergy and MDR. METHODS: The cell viability and apoptosis were determined by CCK-8 assay and acridine orange/ethidium bromide (AO/EB) fluorescence staining assay. Immunofluorescence and immunohistochemical staining were used to detect the expression of P-gp in DLBCL cells and tissues. Rhodamine-123 accumulation assay was used to evaluate the pump function of P-gp. The possible mechanisms of melatonin sensitize DLBCL cells to epirubicin were explored by western blotting, cytochrome C release, and pulldown assay. RESULTS: Melatonin significantly enhanced the epirubicin-induced cell proliferation suppression, epirubicin-induced apoptosis, and reduced the IC50 value of epirubicin. Further, melatonin synergized with epirubicin to promote the activation of the mitochondria-mediated apoptosis pathway and increased the accumulation of epirubicin in DLBCL cells by inhibiting the expression and function of P-gp. Immunohistochemical staining studies revealed that P-gp expression was positively correlated with P65 expression. Epirubicin was subsequently discovered to upregulate the expression of P-gp by activating the NF-κB pathway in the DLBCL cells. Melatonin reduced the amount of P65 protein in the nucleus and abrogated the ability of P65 to bind to the ABCB1 promoter, decisively suppressing P-gp expression. CONCLUSIONS: Our results demonstrated that melatonin inactivates the NF-κB pathway and downregulates the expression of P-gp, ultimately sensitizing DLBCL cells to the epirubicin that suppresses their growth.

13.
Aging (Albany NY) ; 13(2): 2575-2592, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33316778

RESUMEN

Radiation therapy is widely used to treat a variety of malignant tumors, including non-small-cell lung cancer (NSCLC). However, ionizing radiation (IR) paradoxically promotes radioresistance, metastasis and recurrence by inducing epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). Here, we developed two NSCLC radioresistant (RR) cell lines (A549-RR and H1299-RR) and characterized their motility, cell cycle distribution, DNA damage, and CSC production using migration/invasion assays, flow cytometry, comet assays, and sphere formation, respectively. We also evaluated their tumorigenicity in vivo using a mouse xenograft model. We found that invasion and spheroid formation by A549-RR and H1299-RR cells were increased as compared to their parental cells. Furthermore, as compared to radiation alone, the combination of ß-elemene administration with radiation increased the radiosensitivity of A549 cells and reduced expression of EMT/CSC markers while inhibiting the Prx-1/NF-kB /iNOS signaling pathway. Our findings suggest that NSCLC radioresistance is associated with EMT, enhanced CSC phenotypes, and activation of the Prx-1/NF-kB/iNOS signaling pathway. They also suggest that combining ß-elemene with radiation may be an effective means of overcoming radioresistance in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Tolerancia a Radiación/efectos de los fármacos , Fármacos Sensibilizantes a Radiaciones/farmacología , Sesquiterpenos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de la radiación , Proteínas de Homeodominio/metabolismo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
14.
Theranostics ; 10(26): 11938-11949, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33204321

RESUMEN

Background: Immune cells have essential auxiliary functions and influence clinical outcomes in cancer, with high immune infiltration being associated with improved clinical outcomes and better response to treatment in breast cancer (BC). However, studies to date have not fully considered the tumor-infiltrating immune cell (TIIC) landscape in tumors. This study investigated potential biomarkers based on TIICs to improve prognosis and treatment effect in BC. Results: We enrolled 5112 patients for analysis and used cell type identification by estimating relative subsets of RNA transcripts (CIBERSORT), a new computational algorithm, to quantify 22 TIICs in primary BC. From the results of univariate Cox regression, 12 immune cells were determined to be significantly related to the overall survival (OS) of BC patients. Furthermore, least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analyses were applied to construct an immune prognostic model based on six potential biomarkers. By dividing patients into low- and high-risk groups, a significant distinction in OS was found in the training cohort, with 20-year survival rates of 42.6% and 26.3%, respectively. Applying a similar protocol to validation and test cohorts, we found that OS was significantly shorter in the high-risk group than in the low-risk group, regardless of the molecular subtype of BC. Using the immune score model to predict the effect of BC patients to chemotherapy, the survival advantage for the low-risk group was evident among those who received chemotherapy, regardless of the chemotherapy regimen. In evaluating the predictive value of the nomogram, a decision curve showed better predictive accuracy than the standard tumor-node-metastasis (TNM) staging system. Conclusion: The immune cell infiltration-based immune score model can be effectively and efficiently used to predict the prognosis of BC patients as well as the effect of chemotherapy.


Asunto(s)
Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Neoplasias de la Mama/terapia , Nomogramas , Microambiente Tumoral/inmunología , Adulto , Mama/inmunología , Mama/patología , Mama/cirugía , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/mortalidad , Quimioterapia Adyuvante , Estudios de Cohortes , Conjuntos de Datos como Asunto , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Humanos , Estimación de Kaplan-Meier , Mastectomía , Persona de Mediana Edad , Modelos Inmunológicos , Valor Predictivo de las Pruebas , Modelos de Riesgos Proporcionales , RNA-Seq , Estudios Retrospectivos , Factores de Riesgo , Tasa de Supervivencia
15.
J Exp Clin Cancer Res ; 39(1): 243, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33187536

RESUMEN

BACKGROUND: Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. METHODS: In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. RESULTS: Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from - 902 to - 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. CONCLUSION: Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.


Asunto(s)
Proteína HMGB3/efectos de la radiación , Tolerancia a Radiación/genética , Neoplasias del Cuello Uterino/radioterapia , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Transducción de Señal , Transfección
16.
J Cell Mol Med ; 24(20): 12119-12130, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32935463

RESUMEN

As a selective inhibitor of BRAF kinase, dabrafenib has shown potent anti-tumour activities in patients with BRAFV600E mutant anaplastic thyroid cancer. However, the resistance of thyroid cancer cells to dabrafenib limited its therapeutic effect. The effects of melatonin and dabrafenib as monotherapy or in combination on the proliferation, cell cycle arrest, apoptosis, migration and invasion of anaplastic thyroid cancer cells were examined. The molecular mechanism involved in drug combinations was also revealed. Melatonin enhanced dabrafenib-mediated inhibition of cell proliferation, migration and invasion, and promoted dabrafenib-induced apoptosis and cell cycle arrest in anaplastic thyroid cancer cells. Molecular mechanistic studies further uncovered that melatonin synergized with dabrafenib to inhibit AKT and EMT signalling pathways. Furthermore, melatonin and dabrafenib synergistically inhibited the expression of hTERT, and the inhibition of cell viability and the induction of cell cycle arrest mediated by the combination of these two drugs were reversed by hTERT overexpression. Taken together, our results demonstrated that melatonin synergized the anti-tumour effect of dabrafenib in human anaplastic thyroid cancer cells by inhibiting multiple signalling pathways, and provided new insights in exploring the potential therapeutic targets for the treatment of anaplastic thyroid cancer.


Asunto(s)
Imidazoles/uso terapéutico , Melatonina/uso terapéutico , Oximas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Telomerasa/metabolismo , Carcinoma Anaplásico de Tiroides/tratamiento farmacológico , Neoplasias de la Tiroides/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Melatonina/farmacología , Modelos Biológicos , Invasividad Neoplásica , Proteínas Proto-Oncogénicas B-raf/metabolismo
17.
Cell Death Dis ; 11(7): 506, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32632098

RESUMEN

PD-L1 is overexpressed in tumor cells and contributes to cancer immunoevasion. However, the role of the tumor cell-intrinsic PD-L1 in cancers remains unknown. Here we show that PD-L1 regulates lung cancer growth and progression by targeting the WIP and ß-catenin signaling. Overexpression of PD-L1 promotes tumor cell growth, migration and invasion in lung cancer cells, whereas PD-L1 knockdown has the opposite effects. We have also identified WIP as a new downstream target of PD-L1 in lung cancer. PD-L1 positively modulates the expression of WIP. Knockdown of WIP also inhibits cell viability and colony formation, whereas PD-L1 overexpression can reverse this inhibition effects. In addition, PD-L1 can upregulate ß-catenin by inhibiting its degradation through PI3K/Akt signaling pathway. Moreover, we show that in lung cancer cells ß-catenin can bind to the WIP promoter and activate its transcription, which can be promoted by PD-L1 overexpression. The in vivo experiments in a human lung cancer mouse model have also confirmed the PD-L1-mediated promotion of tumor growth and progression through activating the WIP and ß-catenin pathways. Furthermore, we demonstrate that PD-L1 expression is positively correlated with WIP in tumor tissues of human adenocarcinoma patients and the high expression of PD-L1 and WIP predicts poor prognosis. Collectively, our results provide new insights into understanding the pro-tumorigenic role of PD-L1 and its regulatory mechanism on WIP in lung cancer, and suggest that the PD-L1/Akt/ß-catenin/WIP signaling axis may be a potential therapeutic target for lung cancers.


Asunto(s)
Antígeno B7-H1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Progresión de la Enfermedad , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal , beta Catenina/metabolismo , Animales , Antígeno B7-H1/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Proteínas del Citoesqueleto/genética , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Pulmonares/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Persona de Mediana Edad , Modelos Biológicos , Invasividad Neoplásica , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Regiones Promotoras Genéticas/genética , Unión Proteica , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética , Regulación hacia Arriba/genética
18.
Exp Ther Med ; 18(4): 2369-2377, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31555347

RESUMEN

Thyroid cancer is the most common type of endocrine malignancy, and its incidence is increasing. Anaplastic thyroid cancer (ATC), referring to undifferentiated subtypes, is considered to be aggressive and associated with poor prognosis. Conventional therapies, including surgery, chemotherapy and radioiodine therapy, have been used for ATC, but these do not provide any significant reduction of the overall mortality rate. The tumorigenesis, development, dedifferentiation and metastasis of ATC are closely associated with the activation of various tyrosine cascades and inactivation of tumor suppressor genes, including B-Raf proto-oncogene, serine/threonine kinaseV600E, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α,tumor protein 53 mutations and telomerase reverse transcriptase mutation. These pathways exert their functions individually or through a complex network. Identification of these mutations may provide a deeper understanding of ATC. A variety of tyrosine kinase inhibitors have been successfully employed for controlling ATC growth in vitro and in xenografts. Certain novel compounds are still in clinical trials. Multi-kinase inhibitors provide a novel approach with great potential. This systematic review determined the prevalence of the major genetic alterations and their inhibitors in ATC.

19.
Onco Targets Ther ; 12: 4203-4211, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31213838

RESUMEN

Background: In cancers, tumor-associated macrophages (TAMs) play an important role in the progression, evasion of immunity and sensitivity to therapy. Unfortunately, radiation and hypoxia could induce the M2 macrophages infiltration and polarization. Materials and methods: In this study, we investigated the relevance of macrophage recruitment with radiation and hypoxia by transwell. We also evaluated the effect of ß-elemene on the infiltration of M2 macrophages and explored its underlying molecular mechanism by a series of in vitro and in vivo experiments. Results: Irradiated or hypoxia lung cancer cells recruit macrophages, and the recruitment is MCP-1 dependent. We also found that radiation and hypoxia-induced MCP-1 secretion follows upregulation of Prx-1, which leads to nuclear accumulation of NF-κB and HIF-1α expression. In addition, ß-elemene could effectively suppress this recruitment phenomenon through Prx-1/NF-κB/HIF-1α signaling. Conclusion: Our study showed that radiation and hypoxia significantly promoted the macrophages recruitment. ß-elemene could effectively suppress this recruitment phenomenon and MCP-1 expression via inhibiting Prx-1/NF-κB/HIF-1α pathways.

20.
Cancer Lett ; 452: 1-13, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30905820

RESUMEN

Thyroid hormone receptor interactor 4 (TRIP4), a subunit of the tetrameric nuclear activating signal co-integrator 1 (ASC-1) complex, exerts pro-tumorigenic effects. The role for TRIP4 in the regulation of cervical cancer growth and radiation resistance is presently unknown. In this study, TRIP4 was found to be highly expressed in cervical cancer cells and tumor tissues. Knockdown of TRIP4 significantly suppressed cervical cancer cell proliferation and epithelial-mesenchymal transition (EMT), accompanied by inactivation of PI3K/AKT and MAPK/ERK signaling. TRIP4 was also found to target hTERT signaling by regulating its binding to the hTERT promoter. Moreover, the knockdown of TRIP4 increased cell sensitivity to radiation, concomitant with downregulation of Rad51 and p-H2AX. We also demonstrated in an in vivo study that the knockdown of TRIP4 effectively suppressed cervical cancer growth and progression in a xenograft tumor model, and these effects were concomitant with the downregulation of p-AKT, p-ERK, p-MEK1/2, MMP-9 and hTERT expression. Immunohistochemical analysis of tumor tissue microarrays showed that TRIP4 overexpression predicted poor prognosis in patients with cervical cancer. Collectively, these results show that TRIP4 plays an essential role in cervical cancer growth and survival.


Asunto(s)
Movimiento Celular , Proliferación Celular , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Telomerasa/metabolismo , Factores de Transcripción/metabolismo , Neoplasias del Cuello Uterino/enzimología , Animales , Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Activación Enzimática , Transición Epitelial-Mesenquimal , Femenino , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Metástasis de la Neoplasia , Tolerancia a Radiación , Transducción de Señal , Telomerasa/genética , Factores de Transcripción/genética , Carga Tumoral , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/radioterapia , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...