Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.040
Filtrar
1.
J Biol Chem ; : 107443, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838773

RESUMEN

Functional variants of the gene for the cytokine macrophage migration inhibitory factor (MIF) are defined by a 4-nucleotide promoter microsatellite (-794 CATT5-8, rs5844572) and confer risk for autoimmune, infectious, and oncologic diseases. We describe herein the discovery of a prototypic, small molecule inhibitor of MIF transcription with selectivity for high microsatellite repeat number and correspondingly high gene expression. Utilizing a high-throughput luminescent proximity screen, we identify 1-carbomethoxy-5-formyl-4,6,8-trihydroxyphenazine (CMFT) to inhibit the functional interaction between the transcription factor ICBP90 (a.k.a. UHRF1) and the MIF -794 CATT5-8 promoter microsatellite. CMFT inhibits MIF mRNA expression in a -794 CATT5-8 length-dependent manner with an IC50 of 470 nM, and preferentially reduces ICBP90-dependent MIF mRNA and protein expression in high-genotypic versus low-genotypic MIF - expressing macrophages. RNA expression analysis also showed CMFT to downregulate MIF-dependent, inflammatory gene expression with little evidence of off-target metabolic toxicity. These findings provide proof-of-concept for advancing the pharmacogenomic development of precision-based MIF inhibitors for diverse autoimmune and inflammatory conditions.

2.
Oncol Lett ; 28(2): 342, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38855504

RESUMEN

Lung adenocarcinoma (LUAD) is the most common pathological type of lung cancer, and disulfidptosis is a newly discovered mechanism of programmed cell death. However, the effects of disulfidptosis-related lncRNAs (DR-lncRNAs) in LUAD have yet to be fully elucidated. The aim of the present study was to identify and validate a novel lncRNA-based prognostic marker that was associated with disulfidptosis. RNA-sequencing and associated clinical data were obtained from The Cancer Genome Atlas database. Univariate Cox regression and lasso algorithm analyses were used to identify DR-lncRNAs and to establish a prognostic model. Kaplan-Meier curves, receiver operating characteristic curves, principal component analysis, Cox regression, nomograms and calibration curves were used to assess the reliability of the prognostic model. Functional enrichment analysis, immune infiltration analysis, somatic mutation analysis, tumor microenvironment and drug predictions were applied to the risk model. Reverse transcription-quantitative PCR was subsequently performed to validate the mRNA expression levels of the lncRNAs in normal cells and tumor cells. These analyses enabled a DR-lncRNA prognosis signature to be constructed, consisting of nine lncRNAs; U91328.1, LINC00426, MIR1915HG, TMPO-AS1, TDRKH-AS1, AL157895.1, AL512363.1, AC010615.2 and GCC2-AS1. This risk model could serve as an independent prognostic tool for patients with LUAD. Numerous immune evaluation algorithms indicated that the low-risk group may exhibit a more robust and active immune response against the tumor. Moreover, the tumor immune dysfunction exclusion algorithm suggested that immunotherapy would be more effective in patients in the low-risk group. The drug-sensitivity results showed that patients in the high-risk group were more sensitive to treatment with crizotinib, erlotinib or savolitinib. Finally, the expression levels of AL157895.1 were found to be lower in A549. In summary, a novel DR-lncRNA signature was constructed, which provided a new index to predict the efficacy of therapeutic interventions and the prognosis of patients with LUAD.

3.
Front Pharmacol ; 15: 1403767, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38855748

RESUMEN

Background: Enteric glia are essential components of the enteric nervous system. Previously believed to have a passive structural function, mounting evidence now suggests that these cells are indispensable for maintaining gastrointestinal homeostasis and exert pivotal influences on both wellbeing and pathological conditions. This study aimed to investigate the global status, research hotspots, and future directions of enteric glia. Methods: The literature on enteric glia research was acquired from the Web of Science Core Collection. VOSviewer software (v1.6.19) was employed to visually represent co-operation networks among countries, institutions, and authors. The co-occurrence analysis of keywords and co-citation analysis of references were conducted using CiteSpace (v6.1.R6). Simultaneously, cluster analysis and burst detection of keywords and references were performed. Results: A total of 514 publications from 36 countries were reviewed. The United States was identified as the most influential country. The top-ranked institutions were University of Nantes and Michigan State University. Michel Neunlist was the most cited author. "Purinergic signaling" was the largest co-cited reference cluster, while "enteric glial cells (EGCs)" was the cluster with the highest number of co-occurring keywords. As the keyword with the highest burst strength, Crohns disease was a hot topic in the early research on enteric glia. The burst detection of keywords revealed that inflammation, intestinal motility, and gut microbiota may be the research frontiers. Conclusion: This study provides a comprehensive bibliometric analysis of enteric glia research. EGCs have emerged as a crucial link between neurons and immune cells, attracting significant research attention in neurogastroenterology. Their fundamental and translational studies on inflammation, intestinal motility, and gut microbiota may promote the treatment of some gastrointestinal and parenteral disorders.

4.
Opt Express ; 32(8): 14594-14606, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859400

RESUMEN

Nonlinear sum frequency generation (SFG) and difference frequency generation (DFG) are fundamental methods to obtain new light sources for various applications. However, most of the on-chip SFG and DFG are based on conventional resonators, lacking robustness against fabrication defects. Here, we demonstrate topologically protected SFG and DFG in a second-order topological photonic system. The mechanism is based on the nonlinear interaction between three high-Q corner modes inside dual topological band gaps. The frequency matching condition for SFG and DFG is precisely satisfied by designing a valley-photonic-crystal-like topological system, which provides more freedoms to tune the corner modes. The topological SFG and DFG are achieved with high conversion efficiency, and the underlying topological physics is revealed. This work opens up avenues toward topologically protected nonlinear frequency conversion, and can find applications in the fields of on-chip single-photon detections and optical quantum memories with robustness against defects.

5.
Dalton Trans ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38859681

RESUMEN

A photorechargeable supercapacitor was constructed using vanadium pentoxide (V2O5), reduced graphene oxide hydrogel (rGH), and zinc trifluoromethanesulfonate (Zn(CF3SO3)2) as the photoanode, cathode, and electrolyte, respectively. The phase composition, microstructure, chemical structure, light absorption, and specific surface area of the synthesized products and the electrochemical performance of the rGH/V2O5 supercapacitor were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, UV-Vis spectroscopy, the Brunauer-Emmett-Teller (BET) method, and an electrochemical workstation, respectively. The results show that the device has a specific capacity of 164 F g-1 at 0.5 A g-1 under illumination with 95 mW cm-2 light intensity, which is 20.5% higher than that under normal electrical charging. The supercapacitor has a 75% capacity retention rate and 100% coulombic efficiency, respectively, after 10 000 testing cycles under photoelectric synergistic charging and discharging. The as-constructed rGH/V2O5 photorechargeable supercapacitor exhibits promising application potential in electric vehicles and wearable electronics.

6.
Animal Model Exp Med ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860503

RESUMEN

BACKGROUND: Triple-negative breast cancer (TNBC), which is so called because of the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2) receptors on the cancer cells, accounts for 10%-15% of all breast cancers. The heterogeneity of the tumor microenvironment is high. However, the role of plasma cells controlling the tumor migration progression in TNBC is still not fully understood. METHODS: We analyzed single-cell RNA sequencing data from five HER2 positive, 12 ER positive/PR positive, and nine TNBC samples. The potential targets were validated by immunohistochemistry. RESULTS: Plasma cells were enriched in TNBC samples, which was consistent with validation using data from The Cancer Genome Atlas. Cell communication analysis revealed that plasma cells interact with T cells through the intercellular adhesion molecule 2-integrin-aLb2 complex, and then release interleukin 1 beta (IL1B), as verified by immunohistochemistry, ultimately promoting tumor growth. CONCLUSION: Our results revealed the role of plasma cells in TNBC and identified IL1B as a new prognostic marker for TNBC.

7.
BMC Cancer ; 24(1): 714, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858644

RESUMEN

BACKGROUND: Our study aims to explore the relationship, shared gene signature, and the underlying mechanisms that connect rheumatoid arthritis (RA) to colorectal cancer (CRC). METHODS: Mendelian randomization (MR) analysis was conducted to assess the causality between RA and CRC. Summary statistic data-based Mendelian randomization (SMR) leveraging eQTL data was employed to identify the CRC-related causal genes. Integrated analyses of single-cell RNA sequencing and bulk RNA sequencing were employed to comprehensively investigate the shared gene signature and potential mechanisms underlying the pathogenesis of both RA and CRC. Predictive analysis of the shared hub gene in CRC immunotherapy response was performed. Pan-cancer analyses were conducted to explore the potential role of MYO9A in 33 types of human tumors. RESULTS: MR analysis suggested that RA might be associated with a slight increased risk of CRC (Odds Ratio = 1.04, 95% Confidence Interval = 1.01-1.07, P = 0.005). SMR analysis combining transcriptome analyses identified MYO9A as a causal gene in CRC and a shared gene signature in both RA and CRC. MYO9A may contribute to tumor suppression, while downregulation of MYO9A may impact CRC tumorigenesis by disrupting epithelial polarity and architecture, resulting in a worse prognosis in CRC. Additionally, MYO9A shows promise as a powerful predictive biomarker for cancer prognosis and immunotherapy response in CRC. Pan-cancer analyses demonstrated MYO9A may have a protective role in the occurrence and progression of various human cancers. CONCLUSION: RA might be associated with a slight increased risk of CRC. MYO9A is a shared gene signature and a potential immune-related therapeutic target for both CRC and RA. Targeting the MYO9A-mediated loss of polarity and epithelial architecture could be a novel therapeutic approach for CRC.


Asunto(s)
Artritis Reumatoide , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Análisis de la Aleatorización Mendeliana , Miosinas/genética , Perfilación de la Expresión Génica , Transcriptoma , Sitios de Carácter Cuantitativo , Pronóstico , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Multiómica
8.
Int Immunopharmacol ; 137: 112408, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897129

RESUMEN

BACKGROUND: Delayed cerebral ischemia (DCI) is a common and serious complication of subarachnoid hemorrhage (SAH). Its pathogenesis is not fully understood. Here, we developed a predictive model based on peripheral blood biomarkers and validated the model using several bioinformatic multi-analysis methods. METHODS: Six datasets were obtained from the GEO database. Characteristic genes were screened using weighted correlation network analysis (WGCNA) and differentially expressed genes. Three machine learning algorithms, elastic networks-LASSO, support vector machines (SVM-RFE) and random forests (RF), were also used to construct diagnostic prediction models for key genes. To further evaluate the performance and predictive value of the diagnostic models, nomogram model were constructed, and the clinical value of the models was assessed using Decision Curve Analysis (DCA), Area Under the Check Curve (AUC), Clinical Impact Curve (CIC), and validated in the mouse single-cell RNA-seq dataset. Mendelian randomization(MR) analysis explored the causal relationship between SAH and stroke, and the intermediate influencing factors. We validated this by retrospectively analyzing the qPCR levels of the most relevant genes in SAH and SAH-DCI patients. This experiment demonstrated a statistically significant difference between SAH and SAH-DCI and normal group controls. Finally, potential small molecule compounds interacting with the selected features were screened from the Comparative Toxicogenomics Database (CTD). RESULTS: The fGSEA results showed that activation of Toll-like receptor signaling and leukocyte transendothelial cell migration pathways were positively correlated with the DCI phenotype, whereas cytokine signaling pathways and natural killer cell-mediated cytotoxicity were negatively correlated. Consensus feature selection of DEG genes using WGCNA and three machine learning algorithms resulted in the identification of six genes (SPOCK2, TRRAP, CIB1, BCL11B, PDZD8 and LAT), which were used to predict DCI diagnosis with high accuracy. Three external datasets and the mouse single-cell dataset showed high accuracy of the diagnostic model, in addition to high performance and predictive value of the diagnostic model in DCA and CIC. MR analysis looked at stroke after SAH independent of SAH, but associated with multiple intermediate factors including Hypertensive diseases, Total triglycerides levels in medium HDL and Platelet count. qPCR confirmed that significant differences in DCI signature genes were observed between the SAH and SAH-DCI groups. Finally, valproic acid became a potential therapeutic agent for DCI based on the results of target prediction and molecular docking of the characterized genes. CONCLUSION: This diagnostic model can identify SAH patients at high risk for DCI and may provide potential mechanisms and therapeutic targets for DCI. Valproic acid may be an important future drug for the treatment of DCI.

9.
Accid Anal Prev ; 205: 107662, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38897141

RESUMEN

Availability of more accurate Crash Modification Factors (CMFs) is crucial for evaluating the effectiveness of various road safety treatments and prioritizing infrastructure investment accordingly. While customized study for each countermeasure scenario is desired, the conventional CMF estimation approaches rely heavily on the availability of crash data at specific sites. This dependency may hinder the development of CMFs when it is impractical to collect data for recent implementations. Additionally, the transferability of CMF knowledge faces challenges, as the intrinsic similarities between different safety countermeasure scenarios are not fully explored. Aiming to fill these gaps, this study introduces a novel knowledge-mining framework for CMF prediction. This framework delves into the connections of existing countermeasure scenarios and reduces the reliance of CMF estimation on crash data availability and manual data collection. Specifically, it draws inspiration from human comprehension processes and introduces advanced Natural Language Processing (NLP) techniques to extract intricate variations and patterns from existing CMF knowledge. It effectively encodes unstructured countermeasure scenarios into machine-readable representations and models the complex relationships between scenarios and CMF values. This new data-driven framework provides a cost-effective and adaptable solution that complements the case-specific approaches for CMF estimation, which is particularly beneficial when availability of crash data imposes constraints. Experimental validation using real-world CMF Clearinghouse data demonstrates the effectiveness of this new approach, which shows significant accuracy improvements compared to the baseline methods. This approach provides insights into new possibilities of harnessing accumulated transportation knowledge in various applications.

10.
Surg Endosc ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898340

RESUMEN

BACKGROUND: Endoscopic ultrasound-guided pancreatic duct (PD) drainage (EUS-PDD) is being increasingly performed as an alternative method to surgical drainage to achieve PD decompression after failed endoscopic retrograde pancreatography (ERP). However, no directly study has compared EUS-PDD with surgical PD drainage after failed ERP in patients with chronic pancreatitis. METHODS: Consecutive patients who underwent EUS-PDD or longitudinal pancreaticojejunostomy after failed ERP were retrospectively identified from our endoscopy and medical information systems. The primary end point was the Izbicki pain score. The secondary end points were pain relief at the end of follow-up, procedure outcomes, adverse events, readmission, and reintervention. RESULTS: A total of 21 patients (11 EUS-PDD, 10 surgical drainages) were analyzed. There were no significant differences in mean Izbicki pain score (EUS-PDD, 13.6 ± 10.1 vs. surgical drainage 10.7 ± 7.9, p = 0.483) or complete/partial pain relief (60%/30% vs. 70%/30%, p = 0.752) at the end of follow-up of the two groups. The rates of overall adverse events (27.3% vs. 30.0%, p = 0.893) and readmission (63.6% vs. 40.0%, p = 0.290) were similar in the two treatment groups, while patients in EUS-PDD group required more reinterventions (45.5% vs. 0%, p = 0.039) compared with patients in the surgery group. CONCLUSION: EUS-PDD showed comparable pain relief and safety to surgical PD drainage after failed ERP, with a higher rate of reintervention. The selection of EUS-PDD or surgical drainage may be appropriate based on an individualized strategy.

11.
Clin Transl Oncol ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898352

RESUMEN

OBJECTIVE: This study aimed to explore the effect of narrative nursing on improving the negative emotions, sleep quality, and quality of life of patients with moderate to severe cancer pain. METHODS: A total of 80 patients with moderate to severe cancer pain who had been hospitalized in the lymphoma oncology department in our hospital from March 2019 to September 2021 were selected as the study subjects and randomly divided into the conventional nursing and narrative nursing groups, with 40 cases in each group. A conventional nursing intervention was conducted for one group, and narrative nursing was provided for the second group in addition to the conventional nursing. The anxiety and depression, sleep quality, quality of life, and satisfaction with pain management of the patients in the two groups were compared before and after the intervention. RESULTS: In the narrative nursing group, the self-rating anxiety scale and self-rating depression scale scores were significantly lower than those in the conventional nursing group after the intervention (P < 0.05). The scores for sleep quality, sleep duration, sleep efficiency, and daytime dysfunction and the total Pittsburgh Sleep Quality Index scores were significantly lower in the narrative nursing group compared with the conventional care group (P < 0.05). The scores for the physical function, living ability, social adaptation, and psychological status items in the Quality of Life Questionnaire Core 30 were significantly higher in the narrative nursing group than in the conventional care group (P < 0.05). The patients' satisfaction with pain management was higher in the narrative nursing group than in the conventional care group (P < 0.05). CONCLUSION: Narrative nursing can alleviate the negative emotions of anxiety and depression in patients with moderate to severe cancer pain and improve their sleep quality, quality of life, and pain management satisfaction.

12.
Toxicol In Vitro ; 99: 105871, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851603

RESUMEN

Hemoglobin (Hb) is effective inducer for lipid oxidation and protein-polyphenol interaction is a well-known phenomenon. The effects of the interaction of (-)-epigallocatechin gallate (EGCG) with Hb on lipid oxidation were rarely elucidated. The detailed interaction between bovine Hb and EGCG was systematically explored by experimental and theoretical approaches, to illustrate the molecular mechanisms by which EGCG influenced the redox states and stability of Hb. EGCG would bind to the central pocket of protein with one binding site to form Hb-EGCG complex. The binding constant for Hb-EGCG complex was 0.34 × 104 M-1 at 277 K, and thermodynamic parameters (ΔH > 0, ΔS > 0 and ΔG < 0) revealed the participation of hydrophobic forces in the binding process. The binding of EGCG would increase the compactness of protein molecule and diminish the crevice near the heme cavity, which was responsible for the reduction of met-Hb to oxy-Hb and inhibition of hemin release from met-Hb. Moreover, EGCG efficiently suppressed Hb-caused lipid oxidation in liposomes and cod muscles, which was possibly attributed to the reduction to oxy-Hb state and declined hemin dissociation from met-Hb. Altogether, our results provide significant insights into the binding of EGCG to redox-active Hb, which represents a novel mechanism for the anti-oxidant capacity of EGCG in human health and is favorable to the applications of natural EGCG in the good quality of Hb-containing products.

13.
J Cell Mol Med ; 28(11): e18443, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38837873

RESUMEN

The human auricle has a complex structure, and microtia is a congenital malformation characterized by decreased size and loss of elaborate structure in the affected ear with a high incidence. Our previous studies suggest that inadequate cell migration is the primary cytological basis for the pathogenesis of microtia, however, the underlying mechanism is unclear. Here, we further demonstrate that microtia chondrocytes show a decreased directional persistence during cell migration. Directional persistence can define a leading edge associated with oriented movement, and any mistakes would affect cell function and tissue morphology. By the screening of motility-related genes and subsequent confirmations, active Rac1 (Rac1-GTP) is identified to be critical for the impaired directional persistence of microtia chondrocytes migration. Moreover, Rho guanine nucleotide exchange factors (GEFs) and Rho GTPase-activating proteins (GAPs) are detected, and overexpression of Tiam1 significantly upregulates the level of Rac1-GTP and improves directional migration in microtia chondrocytes. Consistently, decreased expression patterns of Tiam1 and active Rac1 are found in microtia mouse models, Bmp5se/J and Prkralear-3J/GrsrJ. Collectively, our results provide new insights into microtia development and therapeutic strategies of tissue engineering for microtia patients.


Asunto(s)
Movimiento Celular , Condrocitos , Microtia Congénita , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Proteína de Unión al GTP rac1 , Animales , Femenino , Humanos , Masculino , Ratones , Condrocitos/metabolismo , Condrocitos/citología , Microtia Congénita/metabolismo , Microtia Congénita/genética , Microtia Congénita/patología , Modelos Animales de Enfermedad , Proteína de Unión al GTP rac1/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/genética
14.
BMC Musculoskelet Disord ; 25(1): 472, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38880874

RESUMEN

BACKGROUND: Scoliosis is a high incidence disease that endangers the physical and mental health of adolescents. Traction therapy, as a conservative treatment plan, is helpful to improve the recovery speed of patients by studying the influence of different traction factors on the therapeutic effect. METHODS: Based on the thin layer CT data of the lumbar spine of a 16-year-old patient with scoliosis, Mimics21.0 was used to extract the 3D digital model, and Geomagic Wrap2021 was used to perform the smooth surface. After that, SolidWorks was used to manually construct the structures, such as the intervertebral disc, and Ansys17.0 was used to add constraints, ligaments, and other features. Three-factor ANOVA was carried out after an orthogonal experiment that considered traction mode, traction angle, and traction force was finished. RESULTS: ① A three-dimensional biomechanical model of lumbar scoliosis was created. ② The model's correctness was confirmed by comparing it to the corpse and other finite element models, as well as by verifying it under a range of working settings. ③ Traction force (P = 0.000), traction angle (P = 0.000), the interaction between traction force and traction angle (P = 0.000), and the interaction between traction mode and traction angle (P = 0.045) were all significant. ④ The interaction between traction force and traction angle has the most significant effect on Cobb, and traction with a certain angle is better than traditional axial traction. ⑤ Traction mode is not significant, but the interaction between traction mode and traction angle is significant. CONCLUSIONS: A certain angle of traction can aid in improving outcomes and the traction force can be suitably decreased in the clinical formulation of the traction plan. The uniformity of correcting effect is more favorable when higher fixation techniques like positive suspension or traction bed traction are used, as opposed to overhanging traction.


Asunto(s)
Análisis de Elementos Finitos , Vértebras Lumbares , Escoliosis , Tracción , Humanos , Tracción/métodos , Escoliosis/terapia , Escoliosis/diagnóstico por imagen , Escoliosis/fisiopatología , Vértebras Lumbares/diagnóstico por imagen , Adolescente , Imagenología Tridimensional , Fenómenos Biomecánicos , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
15.
Chem Eng J ; 4912024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38882000

RESUMEN

Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.

16.
J Med Chem ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38885173

RESUMEN

Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.

17.
World J Clin Cases ; 12(17): 3094-3104, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38898868

RESUMEN

BACKGROUND: The mucosal barrier's immune-brain interactions, pivotal for neural development and function, are increasingly recognized for their potential causal and therapeutic relevance to irritable bowel syndrome (IBS). Prior studies linking immune inflammation with IBS have been inconsistent. To further elucidate this relationship, we conducted a Mendelian randomization (MR) analysis of 731 immune cell markers to dissect the influence of various immune phenotypes on IBS. Our goal was to deepen our understanding of the disrupted brain-gut axis in IBS and to identify novel therapeutic targets. AIM: To leverage publicly available data to perform MR analysis on 731 immune cell markers and explore their impact on IBS. We aimed to uncover immunophenotypic associations with IBS that could inform future drug development and therapeutic strategies. METHODS: We performed a comprehensive two-sample MR analysis to evaluate the causal relationship between immune cell markers and IBS. By utilizing genetic data from public databases, we examined the causal associations between 731 immune cell markers, encompassing median fluorescence intensity, relative cell abundance, absolute cell count, and morphological parameters, with IBS susceptibility. Sensitivity analyses were conducted to validate our findings and address potential heterogeneity and pleiotropy. RESULTS: Bidirectional false discovery rate correction indicated no significant influence of IBS on immunophenotypes. However, our analysis revealed a causal impact of IBS on 30 out of 731 immune phenotypes (P < 0.05). Nine immune phenotypes demonstrated a protective effect against IBS [inverse variance weighting (IVW) < 0.05, odd ratio (OR) < 1], while 21 others were associated with an increased risk of IBS onset (IVW ≥ 0.05, OR ≥ 1). CONCLUSION: Our findings underscore a substantial genetic correlation between immune cell phenotypes and IBS, providing valuable insights into the pathophysiology of the condition. These results pave the way for the development of more precise biomarkers and targeted therapies for IBS. Furthermore, this research enriches our comprehension of immune cell roles in IBS pathogenesis, offering a foundation for more effective, personalized treatment approaches. These advancements hold promise for improving IBS patient quality of life and reducing the disease burden on individuals and their families.

18.
World J Clin Cases ; 12(16): 2813-2821, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38899290

RESUMEN

BACKGROUND: As research on diabetes continues to advance, more complex classifications of this disease have emerged, revealing the existence of special types of diabetes, and many of these patients are prone to misdiagnosis and underdiagnosis, leading to treatment delays and increased health care costs. The purpose of this study was to identify four causes of secondary diabetes. CASE SUMMARY: Secondary diabetes can be caused by various factors, some of which are often overlooked. These factors include genetic defects, autoimmune disorders, and diabetes induced by tumours. This paper describes four types of secondary diabetes caused by Williams-Beuren syndrome, Prader-Willi syndrome, pituitary adenoma, and IgG4-related diseases. These cases deviate significantly from the typical progression of the disease due to their low incidence and rarity, often leading to their neglect in clinical practice. In comparison to regular diabetes patients, the four individuals described here exhibited distinct characteristics. Standard hypoglycaemic treatments failed to effectively control the disease. Subsequently, a series of examinations and follow-up history confirmed the diagnosis and underlying cause of diabetes. Upon addressing the primary condition, such as excising a pituitary adenoma, providing glucocorticoid supplementation, and implementing symptomatic treatments, all patients experienced a considerable decrease in blood glucose levels, which were subsequently maintained within a stable range. Furthermore, other accompanying symptoms improved. CONCLUSION: Rare diseases causing secondary diabetes are often not considered in the diagnosis of diabetes. Therefore, it is crucial to conduct genetic tests, antibody detection and other appropriate diagnostic measures when necessary to facilitate early diagnosis and intervention through proactive and efficient management of the underlying condition, ultimately improving patient outcomes.

19.
Accid Anal Prev ; 205: 107665, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38901161

RESUMEN

Traffic crash risk prediction models have been developed to investigate crash occurrence mechanisms and analyze the effects of various traffic operation factors, data on which are collected by densely deployed detectors, on crash risk. However, in China, freeway detectors are widely spaced (the spacing is usually more than 2 km) and the road geometries vary frequently, especially in mountainous areas. Moreover, many freeway sections are located in urban areas and serve commuting functions. Due to the different mechanisms of crash occurrence on road segments with different geometric design features and traffic operation status, it is necessary to consider these heterogeneities in crash risk prediction. In addition to considering observable heterogeneous effects, it is equally important to consider the existence of unobserved heterogeneities among crash units. This study focuses on the effects of different types of heterogeneities on crash risk for segments of the Yongtaiwen Freeway in Zhejiang Province, China, using crash, traffic flow, and road geometric design data. Latent class analysis (LCA), latent profile analysis (LPA), and a combination of both methods are respectively used to classify road segments into subgroups based on road geometric design features, the traffic operation status, and a combination of both. The results reveal that the binary logit model considering the heterogeneous effects of the combination of road geometric design features and the traffic operation status achieves the best performance. Furthermore, binary conditional logit models and grouped random parameter logit models are developed to analyze the unobserved heterogeneity among crash units, and the results show that the latter has a better goodness of fit. Finally, a paradigm of the crash risk prediction for freeway segments with widely-spaced traffic detectors and frequently-changing geometric features is provided for traffic safety management departments.

20.
Int J Biol Sci ; 20(8): 2881-2903, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904019

RESUMEN

The mechanism that maintains ER-to-Golgi vesicles formation and transport is complicated. As one of the adapters, Ninein-like protein (Nlp) participated in assembly and transporting of partial ER-to-Golgi vesicles that contained specific proteins, such as ß-Catenin and STING. Nlp acted as a platform to sustain the specificity and continuity of cargoes during COPII and COPI-coated vesicle transition and transportation through binding directly with SEC31A as well as Rab1B. Thus, we proposed an integrated transport model that particular adapter participated in specific cargo selection or transportation through cooperating with different membrane associated proteins to ensure the continuity of cargo trafficking. Deficiency of Nlp led to vesicle budding failure and accumulation of unprocessed proteins in ER, which further caused ER stress as well as Golgi fragmentation, and PERK-eIF2α pathway of UPR was activated to reduce the synthesis of universal proteins. In contrast, upregulation of Nlp resulted in Golgi fragmentation, which enhanced the cargo transport efficiency between ER and Golgi. Moreover, Nlp deficient mice were prone to spontaneous B cell lymphoma, since the developments and functions of lymphocytes significantly depended on secretory proteins through ER-to-Golgi vesicle trafficking, including IL-13, IL-17 and IL-21. Thus, perturbations of Nlp altered ER-to-Golgi communication and cellular homeostasis, and might contribute to the pathogenesis of B cell lymphoma.


Asunto(s)
Retículo Endoplásmico , Aparato de Golgi , Retículo Endoplásmico/metabolismo , Animales , Aparato de Golgi/metabolismo , Humanos , Ratones , Transporte de Proteínas , Vesículas Cubiertas por Proteínas de Revestimiento/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...