Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.417
Filtrar
1.
Neural Regen Res ; 20(3): 845-857, 2025 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886957

RESUMEN

JOURNAL/nrgr/04.03/01300535-202503000-00029/figure1/v/2024-06-17T092413Z/r/image-tiff It has been shown clinically that continuous removal of ischemia/reperfusion-induced reactive oxygen species is not conducive to the recovery of late stroke. Indeed, previous studies have shown that excessive increases in hypochlorous acid after stroke can cause severe damage to brain tissue. Our previous studies have found that a small amount of hypochlorous acid still exists in the later stage of stroke, but its specific role and mechanism are currently unclear. To simulate stroke in vivo, a middle cerebral artery occlusion rat model was established, with an oxygen-glucose deprivation/reoxygenation model established in vitro to mimic stroke. We found that in the early stage (within 24 hours) of ischemic stroke, neutrophils produced a large amount of hypochlorous acid, while in the recovery phase (10 days after stroke), microglia were activated and produced a small amount of hypochlorous acid. Further, in acute stroke in rats, hypochlorous acid production was prevented using a hypochlorous acid scavenger, taurine, or myeloperoxidase inhibitor, 4-aminobenzoic acid hydrazide. Our results showed that high levels of hypochlorous acid (200 µM) induced neuronal apoptosis after oxygen/glucose deprivation/reoxygenation. However, in the recovery phase of the middle cerebral artery occlusion model, a moderate level of hypochlorous acid promoted the proliferation and differentiation of neural stem cells into neurons and astrocytes. This suggests that hypochlorous acid plays different roles at different phases of cerebral ischemia/reperfusion injury. Lower levels of hypochlorous acid (5 and 100 µM) promoted nuclear translocation of ß-catenin. By transfection of single-site mutation plasmids, we found that hypochlorous acid induced chlorination of the ß-catenin tyrosine 30 residue, which promoted nuclear translocation. Altogether, our study indicates that maintaining low levels of hypochlorous acid plays a key role in the recovery of neurological function.

2.
Microsyst Nanoeng ; 10(1): 122, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218925

RESUMEN

Wireless sensor nodes (WSNs) play an important role in many fields, including environmental monitoring. However, unattended WSNs face challenges in consuming power continuously even in the absence of useful information, which makes energy supply the bottleneck of WSNs. Here, we realized zero-power infrared switches, which consist of a metasurface and two-phase microfluidic flow. The metasurface can recognize the infrared signal from the target and convert it into heat, which triggers the two-phase microfluidic flow switch. As the target is not present, the switch is turned off. The graphene/MoS2/graphene 2D material heterostructure (thickness <2 nm) demonstrates an exceptionally high thermal resistance of 4.2 K/W due to strong phonon scattering and reduces the heat flow from the metasurface to the supporting substrate, significantly increasing the device sensitivity (the displacement of the two-phase microfluidic flow increases from ~1500 to ~3000 µm). The infrared switch with a pair of symmetric two-phase microfluidic flows can avoid spurious triggering resulting from environmental temperature changes. We realized WSNs with near-zero standby power consumption by integrating the infrared switch, sensors, and wireless communication module. When the target infrared signal appears, the WSNs are woken and show superb visual/auditory sensing performance. This work provides a novel approach for greatly lengthening the lifespan of unattended WSNs.

3.
Mar Life Sci Technol ; 6(3): 502-514, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39219681

RESUMEN

As one of the common malignancies that threaten human life, bladder cancer occurs frequently with a high mortality rate in the world, due to its invasion, recurrence and drug resistance. Natural products from marine microorganisms are becoming the hotspots in discovery of new candidate drug entities, especially in the area of cancer. Brefeldin A (BFA) is a natural Arf-GEFs inhibitor, but due to the low aqueous solubility, strong toxicity, and poor bioavailability, it is urgent to conduct structural optimization research. Herein, a new BFA pyridine acrylate derivative CHNQD-01281 with improved solubility was prepared and found to exert moderate to strong antiproliferative activity on a variety of human cancer cell lines. It was noteworthy that CHNQD-01281 was most sensitive to two bladder cancer cell lines T24 and J82 (IC50 = 0.079 and 0.081 µmol/L) with high selectivity index (SI = 14.68 and 14.32), suggesting a superior safety to BFA. In vivo studies revealed that CHNQD-01281 remarkably suppressed tumor growth in a T24 nude mice xenograft model (TGI = 52.63%) and prolonged the survival time (ILS = 68.16%) in an MB49 allogeneic mouse model via inducing infiltration of cytotoxic T cells. Further mechanism exploration indicated that CHNQD-01281 regulated both EGFR/PI3K/AKT and EGFR/ERK pathways and mediated the chemotactic effect of chemokines on immune effector cells. Overall, CHNQD-01281 may serve as a potential therapeutic agent for bladder cancer through multiple mechanisms. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-024-00246-w.

4.
World J Gastrointest Surg ; 16(8): 2484-2493, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39220065

RESUMEN

BACKGROUND: Gastric cancer remains a leading cause of cancer-related mortality globally. Traditional open surgery for gastric cancer is often associated with significant morbidity and prolonged recovery. AIM: To evaluate the effectiveness of laparoscopic minimally invasive surgery as an alternative to traditional open surgery for gastric cancer, focusing on its potential to reduce trauma, accelerate recovery, and achieve comparable oncological outcomes. METHODS: This study retrospectively analyzed 203 patients with gastric cancer who underwent surgery at the Shanghai Health Medical College Affiliated Chongming Hospital from January 2020 to December 2023. The patients were divided into two groups: Minimally invasive surgery group (n = 102), who underwent laparoscopic gastrectomy, and open surgery group (n = 101), who underwent traditional open gastrectomy. We compared surgical indicators (surgical incision size, intraoperative blood loss, surgical duration, and number of lymph nodes dissected), recovery parameters (time to first flatus, time to start eating, time to ambulation, and length of hospital stay), immune function (levels of IgA, IgG, and IgM), intestinal barrier function (levels of D-lactic acid and diamine oxidase), and stress response (levels of C-reactive protein, interleukin-6, and procalcitonin). RESULTS: The minimally invasive surgery group demonstrated significantly better outcomes in terms of surgical indicators, including smaller incisions, less blood loss, shorter surgery time, and more lymph nodes dissected (P < 0.05 for all). Recovery was also faster in the minimally invasive surgery group, with earlier return of bowel function, earlier initiation of diet, quicker mobilization, and shorter hospital stays (P < 0.05 for all). Furthermore, patients in the minimally invasive surgery group had better preserved immune function, superior intestinal barrier function, and a less pronounced stress response postoperatively (P < 0.05 for all). CONCLUSION: Laparoscopic minimally invasive surgery for gastric cancer not only provides superior surgical indicators and faster recovery but also offers advantages in preserving immune function, protecting intestinal barrier function, and mitigating the stress response compared to traditional open surgery. These findings support the broader adoption of laparoscopic techniques in the management of gastric cancer.

5.
ESC Heart Fail ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225306

RESUMEN

AIMS: Left ventricular hypertrophy (LVH) is frequently detected via echocardiography in individuals with Fabry disease (FD), sometimes leading to confusion with hypertrophic cardiomyopathy (HCM) of other aetiologies. Considering this diagnosis challenge, FD should be included in the list of differential diagnosis for patients presenting with LVH. To address this concern, we conducted a prospective screening study in China, using dried blood spot (DBS) testing, to evaluate patients with unexplained LVH. METHODS: Our study was designed as a nationwide, multicentre prospective investigation. A total of 1015 patients from 55 different centres who were diagnosed with LVH by echocardiography were screened in the study from September 2022 to December 2023. Demographic information, biochemistry data, echocardiography parameters and clinical observations were meticulously collected from all participants. The DBS method was used to assess α-galactosidase A (α-Gal A) activity in males and both α-Gal A and globotriaosylsphingosine (lyso-Gb3) levels in females. RESULTS: The final screening population included 906 patients (589 males, 65%) with LVH, characterized by a mean maximal myocardial thickness of 14.8 ± 4.6 mm and an average age of 56.9 ± 17.2 years. In total, 43 patients (38 males, 5 females) exhibited low α-Gal A activity measurement (<2.2 µmol/L), while 21 patients (10 males, 11 females) presented low α-Gal A activity or elevated lyso-Gb3 levels (>1.1 ng/mL). Among these patients, eight individuals (7 males and 1 female) were genetically confirmed to harbour pathogenic GLA mutations, resulting in a total prevalence of 0.88%. Compared with patients without FD, patients with FD tended to have proteinuria (75% vs. 21.2%, P = 0.001), family history of HCM (37.5% vs. 2.3%, P < 0.01) and neuropathic pain (37.5% vs. 4.4%, P < 0.01) but lower systolic blood pressure (118.5 ± 12.5 vs. 143.3 ± 29.3 mmHg, P = 0.017). Five mutations were previously recognized as associated with FD while the remaining two, p.Asp313Val (c.938A>T) and c.547+3A>G, were deemed potentially pathogenic. Subsequent familial validation post-diagnosis identified an additional 14 confirmed cases. CONCLUSIONS: This pioneering screening study for FD among Chinese patients with unexplained LVH using DBS measurement, revealed an FD detection rate of 0.88%. Our findings confirmed that the combined measurement of lyso-Gb3 and α-Gal A activity is beneficial for primary screening of FD in patients with LVH. Given the availability of efficacious therapies and the value of cascade screening in extended families, early detection of FD in LVH patients is clinically important.

6.
Cancer Commun (Lond) ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39221992

RESUMEN

BACKGROUND: In the era of immunotherapy, neoadjuvant immunochemotherapy (NAIC) for the treatment of locally advanced esophageal squamous cell carcinoma (ESCC) is used clinically but lacks of high-level clinical evidence. This study aimed to compare the safety and long-term efficacy of NAIC followed by minimally invasive esophagectomy (MIE) with those of neoadjuvant chemotherapy (NAC) followed by MIE. METHODS: A prospective, single-center, open-label, randomized phase III clinical trial was conducted at Henan Cancer Hospital, Zhengzhou, China. Patients were randomly assigned to receive either neoadjuvant toripalimab (240 mg) plus paclitaxel (175 mg/m2) + cisplatin (75 mg/m2) (toripalimab group) or paclitaxel + cisplatin alone (chemotherapy group) every 3 weeks for 2 cycles. After surgery, the toripalimab group received toripalimab (240 mg every 3 weeks for up to 6 months). The primary endpoint was event-free survival (EFS). The pathological complete response (pCR) and overall survival (OS) were key secondary endpoints. Adverse events (AEs) and quality of life were also assessed. RESULTS: Between May 15, 2020 and August 13, 2021, 252 ESCC patients ranging from T1N1-3M0 to T2-3N0-3M0 were enrolled for interim analysis, with 127 in the toripalimab group and 125 in the chemotherapy group. The 1-year EFS rate was 77.9% in the toripalimab group compared to 64.3% in the chemotherapy group (hazard ratio [HR] = 0.62; 95% confidence interval [CI] = 0.39 to 1.00; P = 0.05). The 1-year OS rates were 94.1% and 83.0% in the toripalimab and chemotherapy groups, respectively (HR = 0.48; 95% CI = 0.24 to 0.97; P = 0.037). The patients in the toripalimab group had a higher pCR rate (18.6% vs. 4.6%; P = 0.001). The rates of postoperative Clavien-Dindo grade IIIb or higher morbidity were 9.8% in the toripalimab group and 6.8% in the chemotherapy group, with no significant difference observed (P = 0.460). The rates of grade 3 or 4 treatment-related AEs did not differ between the two groups (12.5% versus 12.4%). CONCLUSIONS: The interim results of this ongoing trial showed that in resectable ESCC, the addition of perioperative toripalimab to NAC is safe, may improve OS and might change the standard treatment in the future.

7.
Nature ; 633(8028): 63-70, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39232152

RESUMEN

Optical atomic clocks1,2 use electronic energy levels to precisely keep track of time. A clock based on nuclear energy levels promises a next-generation platform for precision metrology and fundamental physics studies. Thorium-229 nuclei exhibit a uniquely low-energy nuclear transition within reach of state-of-the-art vacuum ultraviolet (VUV) laser light sources and have, therefore, been proposed for construction of a nuclear clock3,4. However, quantum-state-resolved spectroscopy of the 229mTh isomer to determine the underlying nuclear structure and establish a direct frequency connection with existing atomic clocks has yet to be performed. Here, we use a VUV frequency comb to directly excite the narrow 229Th nuclear clock transition in a solid-state CaF2 host material and determine the absolute transition frequency. We stabilize the fundamental frequency comb to the JILA 87Sr clock2 and coherently upconvert the fundamental to its seventh harmonic in the VUV range by using a femtosecond enhancement cavity. This VUV comb establishes a frequency link between nuclear and electronic energy levels and allows us to directly measure the frequency ratio of the 229Th nuclear clock transition and the 87Sr atomic clock. We also precisely measure the nuclear quadrupole splittings and extract intrinsic properties of the isomer. These results mark the start of nuclear-based solid-state optical clocks and demonstrate the first comparison, to our knowledge, of nuclear and atomic clocks for fundamental physics studies. This work represents a confluence of precision metrology, ultrafast strong-field physics, nuclear physics and fundamental physics.

8.
BMC Med ; 22(1): 364, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39232729

RESUMEN

BACKGROUND: The spatiotemporal epidemiological evidence supporting joint endoscopic screening for esophageal cancer (EC) and gastric cancer (GC) remains limited. This study aims to identify combined high-risk regions for EC and GC and determine optimal areas for joint and separate endoscopic screening. METHODS: We analyzed the association of incidence trends between EC and GC in cancer registry areas across China from 2006 to 2016 using spatiotemporal statistical methods. Based on these analyses, we divided different combined risk regions for EC and GC to implement joint endoscopic screening. RESULTS: From 2006 to 2016, national incidence trends for both EC and GC showed a decline, with an average annual percentage change of -3.15 (95% confidence interval [CI]: -5.33 to -0.92) for EC and -3.78 (95% CI: -4.98 to -2.56) for GC. A grey comprehensive correlation analysis revealed a strong temporal association between the incidence trends of EC and GC, with correlations of 79.00% (95% CI: 77.85 to 80.14) in males and 77.62% (95% CI: 76.50 to 78.73) in females. Geographic patterns of EC and GC varied, demonstrating both homogeneity and heterogeneity across different regions. The cancer registry areas were classified into seven distinct combined risk regions, with 33 areas identified as high-risk for both EC and GC, highlighting these regions as priorities for joint endoscopic screening. CONCLUSION: This study demonstrates a significant spatiotemporal association between EC and GC. The identified combined risk regions provide a valuable basis for optimizing joint endoscopic screening strategies for these cancers.


Asunto(s)
Detección Precoz del Cáncer , Neoplasias Esofágicas , Análisis Espacio-Temporal , Neoplasias Gástricas , Humanos , China/epidemiología , Neoplasias Esofágicas/epidemiología , Neoplasias Esofágicas/diagnóstico , Masculino , Femenino , Neoplasias Gástricas/epidemiología , Neoplasias Gástricas/diagnóstico , Incidencia , Detección Precoz del Cáncer/métodos , Persona de Mediana Edad , Anciano , Sistema de Registros
9.
Ying Yong Sheng Tai Xue Bao ; 35(6): 1635-1644, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39235022

RESUMEN

Accurate assessment of material and energy exchange between land and atmosphere is essential for water resources management and sustainable development of agriculture. To understand the characteristics of energy distribution and the dynamic change process of water and heat fluxes within the maize farmland ecosystem in the old course of Yellow River and their response to meteorological factors, we utilized the eddy covariance measurements and the full-element automatic weather station to continuously observe energy fluxes and conventional meteorological elements of summer maize farmland in the old course of Yellow River during 2019-2020. We analyzed the variation of energy fluxes and the effects of environmental factors, such as temperature, precipitation, and wind speed. Additionally, we calculated the energy closure rate and the proportion of energy distribution during the growth stage. The results showed that the peaks of net radiation, sensible heat flux, and latent heat flux occurred between 11:00 and 14:00, and the peak of soil heat flux occurred between 14:00 and 15:00. In terms of energy distribution, energy consumption of summer maize farmland during the whole growth period was dominated by latent heat flux and sensible heat flux. Energy was mainly consumed by sensible heat flux at sowing-emergence stage, accounting for 37.1% of net radiation, respectively. Energy in the rest of growth stages was dominated by latent heat flux. The energy closure rate during the whole growth period was better, with a coefficient of determination of 0.83, and the closure rate was higher in day and lower at night. Precipitation affected latent heat flux and sensible heat flux, and latent heat flux was more sensitive to precipitation. The increase of latent heat flux after rainfall was lower in late growth stage than in early growth stage. During the whole growth period of summer maize, solar radiation was the most significant meteorological factor affecting both sensible heat flux and latent heat flux, followed by vapor pressure deficit. The contribution of temperature and vapor pressure deficit to latent heat flux was significantly higher than sensible heat flux, while the relative contribution of wind speed, relative humidity, and solar radiation to latent heat flux was lower than sensible heat flux. Leaf area index and fractional vegetation cover had a significant positive correlation with latent heat flux and a significant negative correlation with sensible heat flux. Our results could deepen the understanding of water and heat transfer law of summer maize farmland in the old course of Yellow River, providing a theoretical basis for efficient water use of crops.


Asunto(s)
Ecosistema , Calor , Ríos , Estaciones del Año , Zea mays , Zea mays/crecimiento & desarrollo , China , Agua/análisis
10.
Adv Mater ; : e2408475, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235588

RESUMEN

Compact batteries and electronic devices offer a plethora of advantages, including space optimization, portability, integration capability, responsiveness, and reliability. These attributes are crucial technical enablers for the design and implementation of various electronic devices and systems within scientific exploration. Thus, the group harnesses additive manufacturing technology, specifically utilizing five-axis curved-surface multi-material printing equipment, to fabricate aqueous zinc-ion batteries with tungsten-doped manganese dioxide cathode for enhanced adaptability and customization. The five-axis linkage motion system facilitates shorter ion transportation paths for compact batteries and ensures precise and efficient molding of non-developable curved surfaces. Afterward, the compact cell is integrated with a printed nano-silver serpentine resistor temperature sensor, and an integrated functional circuit is created using intense-pulse sintering. Incorporating an emitting Light Emitting Diode (LED) allows temperature measurement through variations in LED brightness. The energy storage module with a high degree of conformity on the carrier surface has the advantages of small size and improved space utilization. The capability to produce Zinc-ion batteries (ZIBs) on curved surfaces presents new avenues for innovation in energy storage technologies, paving the way for the realization of flexible and conformal power sources.

11.
Eur J Med Chem ; 278: 116794, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39226707

RESUMEN

Alzheimer's disease (AD, also known as dementia) has become a serious global health problem along with population aging, and neuroinflammation is the underlying cause of cognitive impairment in the brain. Nowadays, the development of multitarget anti-AD drugs is considered to be one effective approach. Imidazolylacetophenone oxime ethers or esters (IOEs) were multifunctional agents with neuroinflammation inhibition, metal chelation, antioxidant and neuroprotection properties against Alzheimer's disease. In this study, IOEs derivatives 1-8 were obtained by structural modifications of the oxime and imidazole groups, and the SARs showed that (Z)-oxime ether (derivative 2) had stronger anti-neuroinflammatory and neuroprotective ability than (E)-congener. Then, IOEs derivatives 9-30 were synthesized based on target-directed ligands and activity-based groups hybridization strategy. In vitro anti-AD activity screening revealed that some derivatives exhibited potentially multifunctional effects, among which derivative 28 exhibited the strongest inhibitory activity on NO production with EC50 value of 0.49 µM, and had neuroprotective effects on 6-OHDA-induced cell damage and RSL3-induced ferroptosis. The anti-neuroinflammatory mechanism showed that 28 could inhibit the release of pro-inflammatory factors PGE2 and TNF-α, down-regulate the expression of iNOS and COX-2 proteins, and promote the polarization of BV-2 cells from pro-inflammatory M1 phenotype to anti-inflammatory M2 phenotype. In addition, 28 can dose-dependently inhibit acetylcholinesterase (AChE) and Aß42 aggregation. Moreover, the selected nuclide [18F]-labeled 28 was synthesized to explore its biodistribution by micro-PET/CT, of which 28 can penetrate the blood-brain barrier (BBB). These results shed light on the potential of 28 as a new multifunctional candidate for AD treatment.

12.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39226889

RESUMEN

Systematic characterization of biological effects to genetic perturbation is essential to the application of molecular biology and biomedicine. However, the experimental exhaustion of genetic perturbations on the genome-wide scale is challenging. Here, we show TranscriptionNet, a deep learning model that integrates multiple biological networks to systematically predict transcriptional profiles to three types of genetic perturbations based on transcriptional profiles induced by genetic perturbations in the L1000 project: RNA interference, clustered regularly interspaced short palindromic repeat, and overexpression. TranscriptionNet performs better than existing approaches in predicting inducible gene expression changes for all three types of genetic perturbations. TranscriptionNet can predict transcriptional profiles for all genes in existing biological networks and increases perturbational gene expression changes for each type of genetic perturbation from a few thousand to 26 945 genes. TranscriptionNet demonstrates strong generalization ability when comparing predicted and true gene expression changes on different external tasks. Overall, TranscriptionNet can systemically predict transcriptional consequences induced by perturbing genes on a genome-wide scale and thus holds promise to systemically detect gene function and enhance drug development and target discovery.


Asunto(s)
Aprendizaje Profundo , Humanos , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/métodos , Biología Computacional/métodos , Regulación de la Expresión Génica , Interferencia de ARN
13.
ACS Biomater Sci Eng ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39228365

RESUMEN

The integration of hydrogel-based bioinks with 3D bioprinting technologies presents an innovative approach to chronic wound management, which is particularly challenging to treat because of its multifactorial nature and high risk of complications. Using precise deposition techniques, 3D bioprinting significantly alters traditional wound care paradigms by enabling the fabrication of patient-specific wound dressings that imitate natural tissue properties. Hydrogels are notably beneficial for these applications because of their abundant water content and mechanical properties, which promote cell viability and pathophysiological processes of wound healing, such as re-epithelialization and angiogenesis. This article reviews key 3D printing technologies and their significance in enhancing the structural and functional outcomes of wound-care solutions. Challenges in bioink viscosity, cell viability, and printability are addressed, along with discussions on the cross-linking and mechanical stability of the constructs. The potential of 3D bioprinting to revolutionize chronic wound management rests on its capacity to generate remedies that expedite healing and minimize infection risks. Nevertheless, further studies and clinical trials are necessary to advance these therapies from laboratory to clinical use.

14.
J Am Heart Assoc ; : e032086, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234806

RESUMEN

BACKGROUND: Many disease processes are influenced by circadian clocks and display ~24-hour rhythms. Whether disruptions to these rhythms increase stroke risk is unclear. We evaluated the association between 24-hour rest-activity rhythms, stroke risk, and major poststroke adverse outcomes. METHODS AND RESULTS: We examined ~100 000 participants from the UK Biobank (aged 44-79 years; ~57% women) assessed with actigraphy (6-7 days) and 5-year median follow-up. We derived (1) most active 10-hour activity counts across the 24-hour cycle and the timing of its midpoint timing; (2) the least active 5-hour count and its midpoint; (3) relative amplitude; (4) interdaily stability; and (5) intradaily variability, for stability and fragmentation of the rhythm. Cox proportional hazard models were constructed for time to (1) incident stroke (n=1652) and (2) poststroke adverse outcomes (dementia, depression, disability, or death). Suppressed relative amplitude (lowest quartile [quartile 1] versus the top quartile [quartile 4]) was associated with stroke risk (hazard ratio [HR], 1.61 [95% CI, 1.35-1.92]; P<0.001) after adjusting for demographics. Later most active 10-hour activity count midpoint timing (14:00-15:26; HR, 1.26 [95% CI, 1.07-1.49]; P=0.007) also had higher stroke risk than earlier (12:17-13:10) participants. A fragmented rhythm (intradaily variability) was also associated with higher stroke risk (quartile 4 versus quartile 1; HR, 1.26 [95% CI, 1.06-1.49]; P=0.008). Suppressed relative amplitude was associated with risk for poststroke adverse outcomes (quartile 1 versus quartile 4; HR, 2.02 [95% CI, 1.46-2.48]; P<0.001). All associations were independent of age, sex, race, obesity, sleep disorders, cardiovascular diseases or risks, and other comorbidity burdens. CONCLUSIONS: Suppressed 24-hour rest-activity rhythm may be a risk factor for stroke and an early indicator of major poststroke adverse outcomes.

15.
Cancer Res ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137404

RESUMEN

Prostate cancer (PCa) rarely responds to immune-checkpoint blockade (ICB) therapies. Cancer-associated fibroblasts (CAFs) are critical components of the immunologically "cold" tumor microenvironment and are considered a promising target to enhance the immunotherapy response. In this study, we aimed to reveal the mechanisms regulating CAF plasticity to identify potential strategies to switch CAFs from pro-tumorigenic to anti-tumor phenotypes and enhance ICB efficacy in PCa. Integration of four PCa single-cell RNA-sequencing datasets defined pro-tumorigenic and anti-tumor CAFs, and RNA-seq, flow cytometry, and a PCa organoid model demonstrated the functions of two CAF subtypes. Extracellular matrix-associated CAFs (ECM-CAF) promoted collagen deposition and cancer cell progression, and lymphocyte-associated CAFs (Lym-CAF) exhibited an anti-tumor phenotype and induced the infiltration and activation of CD8+ T cells. YAP1 activity regulated the ECM-CAF phenotype, and YAP1 silencing promoted switching to Lym-CAFs. NF-κB p65 was the core transcription factor in the Lym-CAF subset, and YAP1 inhibited nuclear translocation of p65. Selective depletion of YAP1 in ECM-CAFs in vivo promoted CD8+ T-cell infiltration and activation and enhanced the therapeutic effects of anti- PD-1 treatment in PCa. Overall, this study revealed a mechanism regulating CAF identity in PCa and highlighted a therapeutic strategy for altering the CAF subtype to suppress tumor growth and increase sensitivity to ICB.

16.
J Chem Inf Model ; 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39157865

RESUMEN

Aflatoxin B1 (AFB1) accumulates in crops, where it poses a threat to human health. To detect AFB1, anti-AFB1 monoclonal antibodies have been developed and are widely used. While the sensitivity and specificity of these antibodies have been extensively studied, information regarding the atomic-level docking of AFB1 (and its derivatives) with these antibodies is limited. Such information is crucial for understanding the key interactions that are required for high affinity and specificity in aflatoxin binding. First, a 3D comparative model of anti-AFB1 antibody (Ab-4B5G6) was predicted from the sequence using RosettaAntibody. We then utilized RosettaLigand to dock AFB1 onto ten homology models, producing a total of 10,000 binding modes. Interestingly, the best-scoring mode predicted strong interactions involving four sites within the heavy chain: ALA33, ASN52, HIS95, and TRP99. Importantly, these strong binding interactions exclusively involve the variable domain of the heavy chain. The best-scoring mode with AFB1 was also obtained through AF multimer combined with RosettaLigand, and two interactions at TRP and HIS were consistent with those found by Rosetta antibody-ligand computational simulation. The role of tryptophan in π interactions in antibodies was confirmed through mutation experiments, and the resulting mutant (W99A) exhibited a >1000-fold reduction in binding affinity for AFB1 and analogs, indicating the effect of tryptophan on the stability of CDR-H3 region. Additionally, we evaluated the binding of two glycolic acid-derived molecular derivatives (with impaired hydrogen bonding potential), and these derivatives (AFB2-GA and AFG2-GA) demonstrated a very weak binding affinity for Ab-4B5G6. The heavy chain was successfully isolated, and its sensitivity and specificity were consistent with those of the intact antibody. The homology models of variable heavy (VH) single-domain antibodies were established by RosettaAntibody, and the docking analysis revealed the same residues, including Ala, His, and Trp. Compared to the potential binding mode of fragment variable (FV) region, the results from a model of VH indicated that there are seven models involved in hydrophobic interaction with TYR32, which is usually referred to as polar amino acid and has both hydrophobic and hydrophilic features depending on the circumstances. Our work encompasses the entire process of Rosetta antibody-ligand computational simulation, highlighting the significance of variable heavy domain structural design in enhancing molecular interactions.

17.
Anal Chem ; 96(33): 13429-13437, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39106034

RESUMEN

Ion mobility spectrometry (IMS) is a compact and sensitive trace gas analysis instrument that ionizes the sample into ions for detection. Typically, an ion gate is used to cut the continuous ion beam into ion packets for separation and detection. However, commonly used ion gates suffer from complex structures or low ion transmission rates, making the gateless IMS a viable alternative. In this study, an IMS based on a pulsed photoelectric effect ionization source was designed. The photoelectrons were generated by irradiating a photoelectric material with a back-illuminated pulsed xenon lamp. This allows for low-energy photoelectron generation and the production of simple reactant ions (O2-(H2O)n) and thus negative product ions. The photoelectron current generated by this ionization source was analyzed, which can reach an intensity of a few microamperes and can be converted into an ion signal exceeding 10 nA. The introduction of the pulsed photoelectric effect ionization source makes it possible to generate separate ion packets and complete ion injection when a constant electric field is maintained in the ionization region. And with an assisted pulsed electric field in the ionization region, the resolving power of the system can be effectively improved to 1.85 times that of the constant electric field. The IMS developed in this study was used for the detection of common volatile hazardous chemicals, yielding effective results. The detection limit for phenol was below 1 ppb, and the dynamic response range exceeded 1 order of magnitude, which implies the potential applications of this IMS to detect substances with high electron affinity, such as explosives detection in public safety.

18.
ACS Nano ; 18(33): 21975-21984, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39115423

RESUMEN

Promotion of oxygen reduction reaction (ORR) kinetics, to a large extent, depends on the rational modulation of the electronic structure and mass diffusion of electrocatalysts. Herein, a ferrocene (Fc)-assisted strategy is developed to prepare Fc-trapped ZnMo-hybrid zeolitic imidazolate framework (Fc@ZnMo-HZIF-50) and the derived Fe single atom coupling with MoC nanoparticles, coembedded in hierarchically porous N-doped carbon cubes (MoC@FeNC-50). The introduced Fc is utilized not only as an iron source for single atoms but also as a morphology regulator for generating a hierarchically porous structure. The redistribution of electrons between Fe single atoms and MoC nanoparticles effectively promotes the adsorption of O2 and the formation of *OOH intermediates during the ORR process. Along with a 3D hierarchically porous architecture for enhanced mass transport, the as-fabricated MoC@FeNC-50 presents excellent activity (E1/2 = 0.83 V) and durability (only 9.5% decay in current after 40000 s). This work could inspire valuable insights into the construction of efficient electrocatalysts through electron configuration and kinetics engineering.

19.
ACS Nano ; 18(33): 22055-22070, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39116283

RESUMEN

The selective elimination of cytotoxic ROS while retaining essential ones is pivotal in the management of chronic inflammation. Co-occurring bacterial infection further complicates the conditions, necessitating precision and an efficacious treatment strategy. Herein, the dynamic ROS nanomodulators are rationally constructed through regulating the surface states of herbal carbon dots (CDs) for on-demand inflammation or infection elimination. The phenolic OH containing CDs derived from honeysuckle (HOCD) and dandelion (DACD) demonstrated appropriate redox potentials, ensuring their ability to scavenge cytotoxic ROS such as ·OH and ONOO-, while invalidity toward essential ones such as O2·-, H2O2, and NO. This enables efficient treatment of chronic inflammation without affecting essential ROS signal pathways. The surface C-N/C═N of CDs derived from taxus leaves (TACD) and DACD renders them with suitable band structures, facilitating absorption in the red region and efficient generation of O2·- upon light irradiation for sterilization. Specifically, the facilely prepared DACD demonstrates fascinating dynamic ROS modulating ability, making it highly suitable for addressing concurrent chronic inflammation and infection, such as diabetic wound infection. This dynamic ROS regulation strategy facilitates the realization of the precise and efficient treatment of chronic inflammation and infection with minimal side effects, holding immense potential for clinical practice.


Asunto(s)
Carbono , Inflamación , Puntos Cuánticos , Especies Reactivas de Oxígeno , Carbono/química , Carbono/farmacología , Especies Reactivas de Oxígeno/metabolismo , Inflamación/tratamiento farmacológico , Animales , Ratones , Puntos Cuánticos/química , Humanos , Células RAW 264.7 , Propiedades de Superficie
20.
Int J Ophthalmol ; 17(8): 1557-1567, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39156770

RESUMEN

This case report details a rare instance of rapid iris metastasis from esophageal cancer in a 59-year-old man. A literature review was conducted to explore recent advances in detecting, diagnosing, and treating intraocular metastatic malignancies. Positron emission tomography-computed tomography played a crucial role in identifying primary sites and systemic metastases. Local treatment combined with systemic therapy effectively reduced tumor size, preserved useful vision, and improved the patient's survival rate. A comparison was made of the characteristics of iris metastases from esophageal cancer and lung cancer, including age, gender, tumor characteristics, and treatment. The challenges associated with diagnosis and treatment are discussed, highlighting the implications for clinical practice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA