Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 342: 123099, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070640

RESUMEN

Palm oil mill effluent (POME) is regarded as deleterious to the environment, primarily owing to the substantial volume of waste it produces during palm oil extraction. In terms of contaminant composition, POME surpasses the pollutant content typically found in standard municipal sewage, therefore releasing it without treatment into water bodies would do irreparable damage to the environment. Main palm oil mills are normally located in the proximity of natural rivers in order to take advantage of the cheap and abundant water source. The same rivers are also used as a water source for many villages situated along the river banks. As such, it is imperative to degrade POME before its disposal into the water bodies for obvious reasons. The treatment methods used so far include the biological processes such as open ponding/land application, which consist of aerobic as well as anaerobic ponds, physicochemical treatment including membrane technology, adsorption and coagulation are successful for the mitigation of contaminants. As the above methods require large working area and it takes more time for contaminant degradation, and in consideration of the strict environmental policies as well as palm oil being the most sort of vegetable oil in several countries, numerous researchers have concentrated on the emerging technologies such as advanced oxidation processes (AOPs) to remediate POME. Methods such as the photocatalysis, Fenton process, sonocatalysis, sonophotocatalysis, ozonation have attained special importance for the degradation of POME because of their efficiency in complete mineralization of organic pollutants in situ. This review outlines the AOP technologies currently available for the mineralization of POME with importance given to sonophotocatalysis and ozonation as these treatment process removes the need to transfer the pollutant while possibly degrading the organic matter sufficiently to be used in other industry like fertilizer manufacturing.


Asunto(s)
Contaminantes Ambientales , Ozono , Aceite de Palma , Residuos Industriales/análisis , Eliminación de Residuos Líquidos , Aceites de Plantas/química , Agua
2.
Appl Microbiol Biotechnol ; 105(18): 6627-6648, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34468802

RESUMEN

Mixotrophic bacteria provide a desirable alternative to the use of classical heterotrophic or chemolithoautotrophic bacteria in environmental technology, particularly under limiting nutrients conditions. Their bi-modal ability of adapting to inorganic or organic carbon feed and sulfur, nitrogen, or even heavy metal stress conditions are attractive features to achieve efficient bacterial activity and favorable operation conditions for the environmental detoxification or remediation of contaminated waste and wastewater. This review provides an overview on the state of the art and summarizes the metabolic traits of the most promising and emerging non-model mixotrophic bacteria for the environmental detoxification of contaminated wastewater and waste containing excess amounts of limiting nutrients. Although mixotrophic bacteria usually function with low organic carbon sources, the unusual capabilities of mixotrophic electroactive exoelectrogens and electrotrophs in bioelectrochemical systems and in microbial electrosynthesis for accelerating simultaneous metabolism of inorganic or organic C and N, S or heavy metals are reviewed. The identification of the mixotrophic properties of electroactive bacteria and their capability to drive mono- or bidirectional electron transfer processes are highly exciting and promising aspects. These aspects provide an appealing potential for unearthing new mixotrophic exoelectrogens and electrotrophs, and thus inspire the next generation of microbial electrochemical technology and mixotrophic bacterial metabolic engineering. KEY POINTS: • Mixotrophic bacteria efficiently and simultaneously remove C and N, S or heavy metals. • Exoelectrogens and electrotrophs accelerate metabolism of C and N, S or heavy metals. • New mixotrophic exoelectrogens and electrotrophs should be discovered and exploited.


Asunto(s)
Metales Pesados , Aguas Residuales , Bacterias/genética , Procesos Heterotróficos , Nitrógeno
3.
Water Res ; 202: 117421, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34390948

RESUMEN

The debate on whether photocatalysis can reach full maturity at commercial level as an effective and economical process for treatment and purification of water and wastewater has recently intensified. Despite a bloom of scientific investigations in the last 30 years, particularly with regards to innovative photocatalytic materials, photocatalysis has so far seen a few industrial applications. Regardless of the points of view, it has been realized that research on reactor design and modeling are now equally urgent to match the extensive research carried out on innovative photocatalytic materials. In reality, the development of photocatalytic reactors has advanced steadily in terms of modeling and reactor design over the last two decades, though this topic has captured a smaller specialized audience. In this critical review, we introduce the latest developments on photocatalytic reactors for water treatment from an engineering perspective. The focus is on the modeling and design of photocatalytic reactors for water treatment at pilot- or at greater scale. Photocatalytic reactors utilizing both natural sunlight and UV irradiation sources are comprehensively discussed. The most promising photoreactor designs and models are examined giving key design guidelines. Other engineering considerations, such as operation, cost analysis, patents, and several industrial applications of photocatalytic reactors for water treatment are also presented. The dissemination of key photocatalytic reactor design principles among the scientific community and the water industry is currently one of the greatest obstacles in translating PWT research into widespread real-world application.


Asunto(s)
Purificación del Agua , Catálisis , Luz Solar , Rayos Ultravioleta , Aguas Residuales
4.
RSC Adv ; 10(29): 17247-17254, 2020 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35521462

RESUMEN

The self-cleaning and super hydrophilic properties of pristine TiO2 and of TiO2 doped with Er3+ or Y3+ transparent thin films deposited onto glass substrates were investigated. The thin films prepared by multiple dipping and drying cycles of the glass substrate into the pristine TiO2 sol and Er3+ or Y3+-doped TiO2 sol were characterized by X-ray diffraction, UV-vis spectrophotometry, and atomic force microscopy (AFM). The self-cleaning photocatalytic activity of the thin films towards the removal of oleic acid deposited on the surface under UVA irradiation was evaluated. A remarkable enhancement was observed in the hydrophilic nature of the TiO2 thin films under irradiation. The optical properties and wettability of TiO2 were not affected by Er3+ or Y3+ doping. However, the photocatalytic degradation of oleic acid under UVA irradiation improved up to 1.83 or 1.95 fold as the Er3+ or Y3+ content increased, respectively, due to the enhanced separation of the photogenerated carriers and reduced crystallite size. AFM analysis showed that the surface roughness increased by increasing the Er3+ or Y3+ content due to the formation of large aggregates. This in turn contributes to the increase of the active surface area enhancing the photodegradation process. This study demonstrates that TiO2 doped with low amounts of Er3+ or Y3+ down to 0.5 mol% can produce transparent, super-hydrophilic, thin film surfaces with remarkable self-cleaning properties.

5.
Water Res ; 169: 115203, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669902

RESUMEN

The photodegradation process of methylisothiazolinone (MIT), benzisothiazolinone (BIT), and isoxazole (ISOX) in ultrapure water and synthetic wastewater by means of UV254 photolysis and by UV254/H2O2 advanced oxidation process were investigated in a microcapillary photoreactor designed for ultrafast photochemical transformation of microcontaminants. For the first time, we estimated key photo-kinetic parameters, i.e. quantum yields (35.4 mmol·ein-1 for MIT, and 13.5 and 55.8 mmol·ein-1 for BIT at pH = 4-6 and 8, respectively) and rate constants of the reaction of photo-generated OH radicals with MIT and BIT (2.09·109 and 5.9·109 L mol-1·s-1 for MIT and BIT). The rate constants of the reaction of photo-generated OH radicals with ISOX in MilliQ water was also estimated (2.15·109 L mol-1·s-1) and it was in good agreement with literature indications obtained in different aqueous matrices. The models were extended and validated to the case of simultaneous degradation of mixtures of these compounds and using synthetic wastewater as an aqueous matrix. High resolution-accurate mass spectrometry analysis enabled identification of the main intermediates (BIT200, B200, saccharin, BIT166) and enabled proposal of a novel degradation pathway for BIT under UV254/H2O2 treatment. This study demonstrates an ultrafast method to determine key photo-kinetic parameters of contaminants of emerging concern in water and wastewater, which are needed for design and validation of photochemical water treatment processes of municipal and industrial wastewaters.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Isoxazoles , Oxidación-Reducción , Fotólisis , Rayos Ultravioleta
6.
J Hazard Mater ; 371: 463-473, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-30875574

RESUMEN

The simultaneous production of acetate from bicarbonate (from CO2 sequestration) and hydrogen gas, with concomitant removal of Cd(II) heavy metal in water is demonstrated in multifunctional metallurgical microbial electrosynthesis systems (MES) incorporating Cd(II) tolerant electrochemically active bacteria (EAB) (Ochrobactrum sp. X1, Pseudomonas sp. X3, Pseudomonas delhiensis X5, and Ochrobactrum anthropi X7). Strain X5 favored the production of acetate, while X7 preferred the production of hydrogen. The rate of Cd(II) removal by all EAB (1.20-1.32 mg/L/h), and the rates of acetate production by X5 (29.4 mg/L/d) and hydrogen evolution by X7 (0.0187 m3/m3/d) increased in the presence of a circuital current. The production of acetate and hydrogen was regulated by the release of extracellular polymeric substances (EPS), which also exhibited invariable catalytic activity toward the reduction of Cd(II) to Cd(0). The intracellular activities of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and dehydrogenase were altered by the circuital current and Cd(II) concentration, and these regulated the products distribution. Such understanding enables the targeted manipulation of the MES operational conditions that favor the production of acetate from CO2 sequestration with simultaneous hydrogen production and removal/recovery of Cd(II) from metal-contaminated and organics-barren waters.


Asunto(s)
Acetatos/síntesis química , Bacterias/metabolismo , Reactores Biológicos , Cadmio/aislamiento & purificación , Carbono/química , Técnicas Electroquímicas/métodos , Hidrógeno/química , Bacterias/clasificación , Bacterias/enzimología , Catálisis
7.
J Photochem Photobiol B ; 193: 131-139, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30851512

RESUMEN

The aim of this study was to evaluate the bactericidal effect of reactive oxygen species (ROS) generated upon irradiation of photocatalytic TiO2 surface coatings using low levels of UVA and the consequent killing of Staphylococcus aureus. The role of intracellular enzymes catalase and superoxide dismutase in protecting the bacteria was investigated using mutant strains. Differences were observed in the intracellular oxidative stress response and viability of S. aureus upon exposure to UVA; these were found to be dependent on the level of irradiance and not the total UVA dose. The wild type bacteria were able to survive almost indefinitely in the absence of the coatings at low UVA irradiance (LI, 1 mW/cm2), whereas in the presence of TiO2 coatings, no viable bacteria were measurable after 24 h of exposure. At LI, the lethality of the photocatalytic effect due to the TiO2 surface coatings was correlated with high intracellular oxidative stress levels. The wild type strain was found to be more resistant to UVA at HI compared with an identical dose at LI in the presence of the TiO2 coatings. The UVA-irradiated titania operates by a "stealth" mechanism at low UVA irradiance, generating low levels of extracellular lethal ROS against which the bacteria are defenceless because the low light level fails to induce the oxidative stress defence mechanism of the bacteria. These results are encouraging for the deployment of antibacterial titania surface coatings wherever it is desirable to reduce the environmental bacterial burden under typical indoor lighting conditions.


Asunto(s)
Titanio/química , Rayos Ultravioleta , Proteínas Bacterianas/genética , Catálisis , Vidrio/química , Microscopía Electrónica de Rastreo , Mutación , Estrés Oxidativo/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efectos de la radiación
8.
Environ Sci Technol ; 53(6): 2937-2947, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30576114

RESUMEN

Advanced oxidation processes via semiconductor photocatalysis for water treatment have been the subject of extensive research over the past three decades, producing many scientific reports focused on elucidating mechanisms and enhancing kinetics for the treatment of contaminants in water. Many of these reports imply that the ultimate goal of the research is to apply photocatalysis in municipal water treatment operations. However, this ignores immense technology transfer problems, perpetuating a widening gap between academic advocation and industrial application. In this Feature, we undertake a critical examination of the trajectory of photocatalytic water treatment research, assessing the viability of proposed applications and identifying those with the most promising future. Several strategies are proposed for scientists and engineers who aim to support research efforts to bring industrially relevant photocatalytic water treatment processes to fruition. Although the reassessed potential may not live up to initial academic hype, an unfavorable assessment in some areas does not preclude the transfer of photocatalysis for water treatment to other niche applications as the technology retains substantive and unique benefits.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Oxidación-Reducción , Agua
9.
MethodsX ; 5: 915-923, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30151351

RESUMEN

Recently, layered double hydroxides (LDHs) have attracted much consideration due to their versatility and easily manipulating properties and their potential applications such as anion exchangers, support of catalysts, flame retardants, biomedical drug delivery. A novel method for the in-situ preparation in situ of LDHs, using electrocoagulation (EC) processes was developed, the EC process was performed under two different conditions, at 5 mA m-2, changing polarity of the electrodes to find out the composition that leads to LDHs generation. The final product was characterized using XRD, BET and FTIR techniques. This method presented the following advantages: (1) Simultaneously LDHs synthesis and wastewater treatment by ion removal; (2) Polarity control allows to manipulate the M2+/M3+ molar ratio, LDHs properties and its potential applications; (3) The method spent less time to carry out the synthesis and; (4) it did not need complicated solid-liquid separation processes.

10.
J Hazard Mater ; 349: 195-204, 2018 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-29427970

RESUMEN

The concentration of antiretroviral drugs in wastewater treatment plants (WWTP) effluents and surface waters of many countries has increased significantly due to their widespread use for HIV treatment. In this study, the removal of stavudine and zidovudine under UV254 photolysis or UV254/H2O2 was investigated in a microcapillary film (MCF) photoreactor, using minimal water samples quantities. The UV254 quantum yield of zidovudine, (2.357 ±â€¯0.0589)·10-2 mol ein-1 (pH 4.0-8.0), was 28-fold higher that the yield of stavudine (8.34 ±â€¯0.334)·10-4 mol ein-1 (pH 6.0-8.0). The second-order rate constant kOH,iof reaction of hydroxyl radical with the antiretrovirals (UV254/H2O2 process) were determined by kinetics modeling: (9.98 ±â€¯0.68)·108 M-1 s-1 (pH 4.0-8.0) for zidovudine and (2.03 ±â€¯0.18)·109 M-1 s-1 (pH 6.0-8.0) for stavudine. A battery of ecotoxicological tests (i.e. inhibition growth, bioluminescence, mutagenic and genotoxic activity) using bacteria (Aliivibrio fischeri, Salmonella typhimurium), crustacean (Daphnia magna) and algae (Raphidocelis subcapitata) revealed a marked influence of the UV dose on the ecotoxicological activity. The UV254/H2O2 treatment process reduced the ecotoxicological risk associated to direct photolysis of the antiretrovirals aqueous solutions, but required significantly higher UV254 doses (≥2000 mJ cm-2) in comparison to common water UV disinfection processes.


Asunto(s)
Antirretrovirales , Peróxido de Hidrógeno , Estavudina , Rayos Ultravioleta , Contaminantes Químicos del Agua , Zidovudina , Aliivibrio fischeri/efectos de los fármacos , Aliivibrio fischeri/crecimiento & desarrollo , Animales , Antirretrovirales/química , Antirretrovirales/toxicidad , Daphnia/efectos de los fármacos , Daphnia/fisiología , Ecotoxicología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/efectos de la radiación , Cinética , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Estavudina/química , Estavudina/toxicidad , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Zidovudina/química , Zidovudina/toxicidad
11.
Water Res ; 122: 591-602, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28628881

RESUMEN

The photochemical and ecotoxicological fate of acyclovir (ACY) through UV254 direct photolysis and in the presence of hydroxyl radicals (UV254/H2O2 process) were investigated in a microcapillary film (MCF) array photoreactor, which provided ultrarapid and accurate photochemical reaction kinetics. The UVC phototransformation of ACY was found to be unaffected by pH in the range from 4.5 to 8.0 and resembled an apparent autocatalytic reaction. The proposed mechanism included the formation of a photochemical intermediate (ϕACY = (1.62 ± 0.07)·10-3 mol ein-1) that further reacted with ACY to form by-products (k' = (5.64 ± 0.03)·10-3 M-1 s-1). The photolysis of ACY in the presence of hydrogen peroxide accelerated the removal of ACY as a result of formation of hydroxyl radicals. The kinetic constant for the reaction of OH radicals with ACY (kOH/ACY) determined with the kinetic modeling method was (1.23 ± 0.07)·109 M-1 s-1 and with the competition kinetics method was (2.30 ± 0.11)·109 M-1 s-1 with competition kinetics. The acute and chronic effects of the treated aqueous mixtures on different living organisms (Vibrio fischeri, Raphidocelis subcapitata, D. magna) revealed significantly lower toxicity for the samples treated with UV254/H2O2 in comparison to those collected during UV254 treatment. This result suggests that the addition of moderate quantity of hydrogen peroxide (30-150 mg L-1) might be a useful strategy to reduce the ecotoxicity of UV254 based sanitary engineered systems for water reclamation.


Asunto(s)
Aciclovir/química , Antivirales/química , Peróxido de Hidrógeno , Fotólisis , Ecotoxicología , Cinética , Oxidación-Reducción , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua
12.
J Hazard Mater ; 323(Pt B): 681-689, 2017 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-27817875

RESUMEN

The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO2) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag+, copper Cu2+, hexavalent chromium as dichromate Cr2O72- and lead Pb2+ ions in a mixture (0.2mM each) were removed at different rates, according to their reduction potentials. Reduced Ag+, Cu2+ and Pb2+ ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr2O72- reduced to the less toxic Cr3+ in solution. The cell produced a current density Jsc of 0.23mA/cm2, an open circuit voltage Voc of 0.63V and a maximum power density of 0.084mW/cm2. A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation.

13.
J Hazard Mater ; 321: 896-906, 2017 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-27745961

RESUMEN

The role of Fe(III) was investigated as an electron-shuttle mediator to enhance the reduction rate of the toxic heavy metal hexavalent chromium (Cr(VI)) in wastewaters, using microbial fuel cells (MFCs). The direct reduction of chromate (CrO4-) and dichromate (Cr2O72-) anions in MFCs was hampered by the electrical repulsion between the negatively charged cathode and Cr(VI) functional groups. In contrast, in the presence of Fe(III), the conversion of Cr(VI) and the cathodic coulombic efficiency in the MFCs were 65.6% and 81.7%, respectively, 1.6 times and 1.4 folds as those recorded in the absence of Fe(III). Multiple analytical approaches, including linear sweep voltammetry, Tafel plot, cyclic voltammetry, electrochemical impedance spectroscopy and kinetic calculations demonstrated that the complete reduction of Cr(VI) occurred through an indirect mechanism mediated by Fe(III). The direct reduction of Cr(VI) with cathode electrons in the presence of Fe(III) was insignificant. Fe(III) played a critical role in decreasing both the diffusional resistance of Cr(VI) species and the overpotential for Cr(VI) reduction. This study demonstrated that the reduction of Cr(VI) in MFCs was effective in the presence of Fe(III), providing an alternative and environmentally benign approach for efficient remediation of Cr(VI) contaminated sites with simultaneous production of renewable energy.


Asunto(s)
Fuentes de Energía Bioeléctrica , Cromo/química , Electrones , Hierro/química , Algoritmos , Difusión , Electroquímica , Electrodos , Oxidación-Reducción , Aguas Residuales/análisis
14.
Water Res ; 89: 375-83, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26735209

RESUMEN

A microcapillary film reactor (MCF) was adopted to evaluate and compare the removal efficiency of benzoylecgonine (BE), an emerging micropollutant deriving from illicit drug abuse (cocaine), in different aqueous matrices: milliQ water, synthetic and real wastewater and surface water. The removal processes investigated were the direct photolysis with UV radiation at 254 nm, and the advanced oxidation process (AOP) with the same UV radiation and hydrogen peroxide. As a result of the microfluidics approach developed through an innovative experimental apparatus, full conversion of BE was reached within a few seconds or minutes of residence time in the MCF depending on the process conditions adopted. The radiation dose was estimated to be approximately 5.5 J cm(-2). The innovative MCF reactor was found to be an effective tool for photochemical studies, especially when using highly priced, uncommon, or regulated substances. The removal efficiency was affected by the nature of the aqueous matrix, due to the presence of different xenobiotics and natural compounds that act primarily as HO(•) radical scavengers and secondly as inner UV254 filters. Moreover, nano-liquid chromatography (LC)-high resolution-mass spectrometry analysis was utilized to identify the main reaction transformation products, showing the formation of hydroxylated aromatics during the photochemical treatment.


Asunto(s)
Cocaína/análogos & derivados , Peróxido de Hidrógeno/química , Fotólisis , Rayos Ultravioleta , Cromatografía Liquida , Cocaína/análisis , Cocaína/química , Cocaína/metabolismo , Agua Dulce/química , Espectrometría de Masas , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
15.
Biotechnol Bioeng ; 113(7): 1481-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26694540

RESUMEN

It has long been established that UVC light is a very effective method for inactivating pathogens in a fluid, yet the application of UVC irradiation to modern biotechnological processes is limited by the intrinsic short penetration distance of UVC light in optically dense protein solutions. This experimental and numerical study establishes that irradiating a fluid flowing continuously in a microfluidic capillary system, in which the diameter of the capillary is tuned to the depth of penetration of UVC light, uniquely treats the whole volume of the fluid to UVC light, resulting in fast and effective inactivation of pathogens, with particular focus to virus particles. This was demonstrated by inactivating human herpes simplex virus type-1 (HSV-1, a large enveloped virus) on a dense 10% fetal calf serum solution in a range of fluoropolymer capillary systems, including a 0.75 mm and 1.50 mm internal diameter capillaries and a high-throughput MicroCapillary Film with mean hydraulic diameter of 206 µm. Up to 99.96% of HSV-1 virus particles were effectively inactivated with a mean exposure time of up to 10 s, with undetectable collateral damage to solution proteins. The kinetics of virus inactivation matched well the results from a new mathematical model that considers the parabolic flow profile in the capillaries, and showed the methodology is fully predictable and scalable and avoids both the side effect of UVC light to proteins and the dilution of the fluid in current tubular UVC inactivation systems. This is expected to speed up the industrial adoption of non-invasive UVC virus inactivation in clinical biotechnology and biomanufacturing of therapeutic molecules. Biotechnol. Bioeng. 2016;113: 1481-1492. © 2015 Wiley Periodicals, Inc.


Asunto(s)
Técnicas Analíticas Microfluídicas/métodos , Fotólisis , Virión/efectos de la radiación , Inactivación de Virus/efectos de la radiación , Herpesvirus Humano 1/efectos de la radiación , Técnicas Analíticas Microfluídicas/instrumentación , Modelos Biológicos
17.
Molecules ; 20(7): 13354-73, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26205059

RESUMEN

Endocrine disruptors in water are contaminants of emerging concern due to the potential risks they pose to the environment and to the aquatic ecosystems. In this study, a solar photocatalytic treatment process in a pilot-scale compound parabolic collector (CPC) was used to remove commercial estradiol formulations (17-ß estradiol and nomegestrol acetate) from water. Photolysis alone degraded up to 50% of estradiol and removed 11% of the total organic carbon (TOC). In contrast, solar photocatalysis degraded up to 57% of estrogens and the TOC removal was 31%, with 0.6 g/L of catalyst load (TiO2 Aeroxide P-25) and 213.6 ppm of TOC as initial concentration of the commercial estradiols formulation. The adsorption of estrogens over the catalyst was insignificant and was modeled by the Langmuir isotherm. The TOC removal via photocatalysis in the photoreactor was modeled considering the reactor fluid-dynamics, the radiation field, the estrogens mass balance, and a modified Langmuir-Hinshelwood rate law, that was expressed in terms of the rate of photon adsorption. The optimum removal of the estrogens and TOC was achieved at a catalyst concentration of 0.4 g/L in 29 mm diameter tubular CPC reactors which approached the optimum catalyst concentration and optical thickness determined from the modeling of the absorption of solar radiation in the CPC, by the six-flux absorption-scattering model (SFM).


Asunto(s)
Anticonceptivos Orales/química , Estradiol/química , Megestrol/análogos & derivados , Procesos Fotoquímicos , Energía Solar , Agua/química , Catálisis , Megestrol/química
18.
J Hazard Mater ; 285: 277-84, 2015 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-25524623

RESUMEN

The effect of the water matrix components of a secondary effluent of a urban wastewater treatment plant on the photocatalytic activity of Ag/AgCl @ chiral TiO2 nanofibers and the undergoing reaction mechanisms were investigated. These effects were evaluated through the water components-induced changes on the net rate of hydroxyl radical (˙OH) generation and modeled using a relative rate technique. Dissolved organic matter DOM (k=-2.8×10(8) M(-1) s(-1)) scavenged reactive oxygen species, Cl(-) (k=-5.3×10(8) M(-1) s(-1)) accelerated the transformation from Ag to AgCl (which is not photocatalytically active under visible-light irradiation), while Ca(2+) at concentrations higher than 50 mM (k=-1.3×10(9) M(-1) s(-1)) induced aggregation of Ag/AgCl and thus all of them revealed inhibitory effects. In contrast, NO3(-) (k=6.9×10(8) M(-1) s(-1)) and CO3(2-) (k=3.7×10(8) M(-1) s(-1)) improved the photocatalytic activity of Ag/AgCl slightly by improving the rate of HO˙ generation. Other ubiquitous secondary effluent components including SO4(2-) (k=3.9×10(5) M(-1) s(-1)), NH3(+) (k=3.5×10(5) M(-1) s(-1)) and Na(+) (k=2.6×10(4) M(-1) s(-1)) had negligible effects. 90% of 17-α-ethynylestradiol (EE2) spiked in the secondary effluent was removed within 12 min, while the structure and size of Ag/AgCl @ chiral TiO2 nanofibers remained stable. This work may be helpful not only to uncover the photocatalytic mechanism of Ag/AgCl based photocatalyst but also to elucidate the transformation and transportation of Ag and AgCl in natural water.


Asunto(s)
Nanopartículas del Metal , Nanofibras , Compuestos de Plata , Plata , Titanio , Contaminantes Químicos del Agua/química , Benzopiranos/química , Calcio/química , Carbonatos/química , Catálisis , Cloruros/química , Etinilestradiol/química , Luz , Nanopartículas del Metal/química , Nanopartículas del Metal/efectos de la radiación , Nanofibras/química , Nanofibras/efectos de la radiación , Nitratos/química , Fotólisis , Especies Reactivas de Oxígeno , Plata/química , Plata/efectos de la radiación , Compuestos de Plata/química , Compuestos de Plata/efectos de la radiación , Titanio/química , Titanio/efectos de la radiación , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
20.
Environ Sci Technol ; 47(23): 13702-11, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24160737

RESUMEN

The literature on photocatalytic oxidation of water pollutants often reports reaction kinetic constants, which cannot be unraveled from photoreactor type and experimental conditions. This study addresses this challenging aspect by presenting a general and simple methodology for the evaluation of fundamental "intrinsic" reaction kinetic constants of photocatalytic degradation of water contaminants, which are independent of photoreactor type, catalyst concentration, irradiance levels, and hydrodynamics. The degradation of the model contaminant, oxalic acid (OA) on titanium dioxide (TiO2) aqueous suspensions, was monitored in two annular photoreactors (PR1 and PR2). The photoreactors with significantly different geometries were operated under different hydrodynamic regimes (turbulent batch mode and laminar flow-through recirculation mode), optical thicknesses, catalyst and OA concentrations, and photon irradiances. The local volumetric rate of photon absorption (LVRPA) was evaluated by the six-flux radiation absorption-scattering model (SFM). The SFM was further combined with a comprehensive kinetic model for the adsorption and photodecomposition of OA on TiO2 to determine local reaction rates and, after integration over the reactor volume, the intrinsic reaction kinetic constants. The model could determine the oxidation of OA in both PR1 and PR2 under a wide range of experimental conditions. This study demonstrates a more meaningful way for determining reaction kinetic constants of photocatalytic degradation of water contaminants.


Asunto(s)
Absorción de Radiación , Hidrodinámica , Luz , Fotólisis , Fotones , Contaminantes Químicos del Agua/efectos de la radiación , Contaminación del Agua/análisis , Catálisis/efectos de la radiación , Cinética , Modelos Teóricos , Ácido Oxálico/química , Oxidación-Reducción/efectos de la radiación , Radiación , Dispersión de Radiación , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...