Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-636947

RESUMEN

Ketamine (KTM), a N-methyl-D-aspartate (NMDA) receptor antagonist, was found to has an anti-inflammatory effect, but some patients suffered from exacerbated pro-inflammatory reactions after anesthesia with KTM. The present study was aimed to examine the underlying mechanism of pro-inflammatory effects of KTM. In this study, RAW264.7 cells were exposed to KTM and NMDA alone or combined for 30 min before lipopolysaccharide (LPS) stimulation. The expression levels of IL-6 and TNF-α were detected by RT-PCR and ELISA, and those of NMDA receptors by RT-PCR in RAW264.7 cells. Additionally, the TLR4 expression was determined by RT-PCR and flow cytometry, respectively. The results showed that in RAW264.7 cells, KTM alone promoted the TLR4 expression, but did not increase the expression of IL-6 or TNF-α. In the presence of LPS, KTM caused a significantly higher expression of IL-6 and TNF-α than LPS alone. NMDA could neither alter the IL-6 and TNF-α mRNA expression, nor reverse the enhanced expression of IL-6 and TNF-α mRNA by KTM in LPS-challenged cells. After TLR4-siRNA transfection, RAW264.7 cells pretreated with KTM no longer promoted the IL-6 and TNF-α expression in the presence of LPS. In conclusion, KTM accelerated LPS-induced inflammation in RAW264.7 cells by promoting TLR4 expression, independent of NMDA receptor.

2.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-250401

RESUMEN

Ketamine (KTM), a N-methyl-D-aspartate (NMDA) receptor antagonist, was found to has an anti-inflammatory effect, but some patients suffered from exacerbated pro-inflammatory reactions after anesthesia with KTM. The present study was aimed to examine the underlying mechanism of pro-inflammatory effects of KTM. In this study, RAW264.7 cells were exposed to KTM and NMDA alone or combined for 30 min before lipopolysaccharide (LPS) stimulation. The expression levels of IL-6 and TNF-α were detected by RT-PCR and ELISA, and those of NMDA receptors by RT-PCR in RAW264.7 cells. Additionally, the TLR4 expression was determined by RT-PCR and flow cytometry, respectively. The results showed that in RAW264.7 cells, KTM alone promoted the TLR4 expression, but did not increase the expression of IL-6 or TNF-α. In the presence of LPS, KTM caused a significantly higher expression of IL-6 and TNF-α than LPS alone. NMDA could neither alter the IL-6 and TNF-α mRNA expression, nor reverse the enhanced expression of IL-6 and TNF-α mRNA by KTM in LPS-challenged cells. After TLR4-siRNA transfection, RAW264.7 cells pretreated with KTM no longer promoted the IL-6 and TNF-α expression in the presence of LPS. In conclusion, KTM accelerated LPS-induced inflammation in RAW264.7 cells by promoting TLR4 expression, independent of NMDA receptor.


Asunto(s)
Animales , Masculino , Ratones , Anestésicos Disociativos , Farmacología , Supervivencia Celular , Regulación de la Expresión Génica , Mediadores de Inflamación , Farmacología , Interleucina-6 , Genética , Ketamina , Farmacología , Lipopolisacáridos , Farmacología , Macrófagos , Metabolismo , N-Metilaspartato , Farmacología , Transducción de Señal , Receptor Toll-Like 4 , Genética , Metabolismo , Factor de Necrosis Tumoral alfa , Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...