Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(17): e2403206121, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38630725

RESUMEN

Mycobacterium abscessus is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of M. abscessus to the human lung is embC which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived embC mutations on the physiology and virulence of M. abscessus, mutations were introduced in the isogenic background of M. abscessus ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection. We show that patient-derived mutational variations in EmbC result in an unexpectedly large number of changes in the physiology of M. abscessus, and its interactions with innate immune cells. Not only did the mutants produce previously unknown forms of LAM with a truncated arabinan domain and 3-linked oligomannoside chains, they also displayed significantly altered cording, sliding motility, and biofilm-forming capacities. The mutants further differed from wild-type M. abscessus in their ability to replicate and induce inflammatory responses in human monocyte-derived macrophages and epithelial cells. The fact that different embC mutations were associated with distinct physiologic and pathogenic outcomes indicates that structural alterations in LAM caused by nonsynonymous nucleotide polymorphisms in embC may be a rapid, one-step, way for M. abscessus to generate broad-spectrum diversity beneficial to survival within the heterogeneous and constantly evolving environment of the infected human airway.


Asunto(s)
Mycobacterium abscessus , Humanos , Proteínas Bacterianas/genética , Lipopolisacáridos/química , Mutación
2.
mBio ; : e0171223, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37943059

RESUMEN

The COVID-19 pandemic demonstrated the poor ability of body temperature to reliably identify SARS-CoV-2-infected individuals, an observation that has been made before in the context of other infectious diseases. While acute infection does not always cause fever, it does reliably drive host transcriptional responses as the body responds at the site of infection. These transcriptional changes can occur both in cells that are directly harboring replicating pathogens and in cells elsewhere that receive a molecular signal that infection is occurring. Here, we identify a core set of approximately 70 human genes that are together upregulated in cultured human cells infected by a broad array of viral, bacterial, and fungal pathogens. We have named these "core response" genes. In theory, transcripts from these genes could serve as biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection. As such, we perform human studies to show that these infection-induced human transcripts can be measured in the saliva of people harboring different types of infections. The number of these transcripts in saliva can correctly classify infection status (whether a person harbors an infection) 91% of the time. Furthermore, in the case of SARS-CoV-2 specifically, the number of core response transcripts in saliva correctly identifies infectious individuals even when enrollees, themselves, are asymptomatic and do not know they are infected.IMPORTANCEThere are a variety of clinical and laboratory criteria available to clinicians in controlled healthcare settings to help them identify whether an infectious disease is present. However, in situations such as a new epidemic caused by an unknown infectious agent, in health screening contexts performed within communities and outside of healthcare facilities or in battlefield or potential biowarfare situations, this gets more difficult. Pathogen-agnostic methods for rapid screening and triage of large numbers of people for infection status are needed, in particular methods that might work on an easily accessible biospecimen like saliva. Here, we identify a small, core set of approximately 70 human genes whose transcripts serve as saliva-based biomarkers of infection in the human body, in a way that is agnostic to the specific pathogen causing infection.

3.
PLoS One ; 17(8): e0272941, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35980910

RESUMEN

When coronavirus disease 2019 (COVID-19) became a pandemic, one of most important questions was whether people who smoke are at more risk of COVID-19 infection. A number of clinical data have been reported in the literature so far, but controversy exists in the collection and interpretation of the data. Particularly, there is a controversial hypothesis that nicotine might be able to prevent SARS-CoV-2 infection. In the present study, motivated by the reported controversial clinical data and the controversial hypothesis, we carried out cytotoxicity assays in Vero E6 cells to examine the potential cytoprotective activity of nicotine against SARS-CoV-2 infection and demonstrated for the first time that nicotine had no significant cytoprotective activity against SARS-CoV-2 infection in these cells.


Asunto(s)
COVID-19 , Animales , Chlorocebus aethiops , Humanos , Nicotina/farmacología , Pandemias , SARS-CoV-2 , Células Vero
4.
Parasit Vectors ; 15(1): 233, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35761349

RESUMEN

BACKGROUND: Fatty acids are the building blocks of complex lipids essential for living organisms. In mosquitoes, fatty acids are involved in cell membrane production, energy conservation and expenditure, innate immunity, development and reproduction. Fatty acids are synthesized by a multifunctional enzyme complex called fatty acid synthase (FAS). Several paralogues of FAS were found in the Aedes aegypti mosquito. However, the molecular characteristics and expression of some of these paralogues have not been investigated. METHODS: Genome assemblies of Ae. aegypti were analyzed, and orthologues of human FAS was identified. Phylogenetic analysis and in silico molecular characterization were performed to identify the functional domains of the Ae. aegypti FAS (AaFAS). Quantitative analysis and loss-of-function experiments were performed to determine the significance of different AaFAS transcripts in various stages of development, expression following different diets and the impact of AaFAS on dengue virus, serotype 2 (DENV2) infection and transmission. RESULTS: We identified seven putative FAS genes in the Ae. aegypti genome assembly, based on nucleotide similarity to the FAS proteins (tBLASTn) of humans, other mosquitoes and invertebrates. Bioinformatics and molecular analyses suggested that only five of the AaFAS genes produce mRNA and therefore represent complete gene models. Expression levels of AaFAS varied among developmental stages and between male and female Ae. aegypti. Quantitative analyses revealed that expression of AaFAS1, the putative orthologue of the human FAS, was highest in adult females. Transient knockdown (KD) of AaFAS1 did not induce a complete compensation by other AaFAS genes but limited DENV2 infection of Aag2 cells in culture and the midgut of the mosquito. CONCLUSION: AaFAS1 is the predominant AaFAS in adult mosquitoes. It has the highest amino acid similarity to human FAS and contains all enzymatic domains typical of human FAS. AaFAS1 also facilitated DENV2 replication in both cell culture and in mosquito midguts. Our data suggest that AaFAS1 may play a role in transmission of dengue viruses and could represent a target for intervention strategies.


Asunto(s)
Aedes , Infecciones por Arbovirus , Dengue , Ácido Graso Sintasas , Aedes/genética , Aedes/virología , Animales , Virus del Dengue , Ácido Graso Sintasas/genética , Ácidos Grasos , Femenino , Humanos , Proteínas de Insectos/genética , Masculino , Mosquitos Vectores/virología , Filogenia , Replicación Viral
5.
Int J Mol Sci ; 23(6)2022 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-35328372

RESUMEN

Biofilm growth is thought to be a significant obstacle to the successful treatment of Mycobacterium abscessus infections. A search for agents capable of inhibiting M. abscessus biofilms led to our interest in 2-aminoimidazoles and related scaffolds, which have proven to display antibiofilm properties against a number of Gram-negative and Gram-positive bacteria, including Mycobacterium tuberculosis and Mycobacterium smegmatis. The screening of a library of 30 compounds led to the identification of a compound, AB-2-29, which inhibits the formation of M. abscessus biofilms with an IC50 (the concentration required to inhibit 50% of biofilm formation) in the range of 12.5 to 25 µM. Interestingly, AB-2-29 appears to chelate zinc, and its antibiofilm activity is potentiated by the addition of zinc to the culture medium. Preliminary mechanistic studies indicate that AB-2-29 acts through a distinct mechanism from those reported to date for 2-aminoimidazole compounds.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Biopelículas , Humanos , Imidazoles/farmacología , Pruebas de Sensibilidad Microbiana , Zinc/farmacología
6.
Viruses ; 14(2)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35215835

RESUMEN

During infection with dengue viruses (DENVs), the lipid landscape within host cells is significantly altered to assemble membrane platforms that support viral replication and particle assembly. Fatty acyl-CoAs are key intermediates in the biosynthesis of complex lipids that form these membranes. They also function as key signaling lipids in the cell. Here, we carried out loss of function studies on acyl-CoA thioesterases (ACOTs), a family of enzymes that hydrolyze fatty acyl-CoAs to free fatty acids and coenzyme A, to understand their influence on the lifecycle of DENVs. The loss of function of the type I ACOTs 1 (cytoplasmic) and 2 (mitochondrial) together significantly increased DENV serotype 2 (DENV2) viral replication and infectious particle release. However, isolated knockdown of mitochondrial ACOT2 significantly decreased DENV2 protein translation, genome replication, and infectious virus release. Furthermore, loss of ACOT7 function, a mitochondrial type II ACOT, similarly suppressed DENV2. As ACOT1 and ACOT2 are splice variants, these data suggest that functional differences and substrate specificities due to the location (cytosol and mitochondria, respectively) of these proteins may account for the differences in DENV2 infection phenotype. Additionally, loss of mitochondrial ACOT2 and ACOT7 expression also altered the expression of several ACOTs located in multiple organelle compartments within the cell, highlighting a complex relationship between ACOTs in the DENV2 virus lifecycle.


Asunto(s)
Virus del Dengue/fisiología , Ácidos Grasos/metabolismo , Palmitoil-CoA Hidrolasa/metabolismo , Tioléster Hidrolasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Citosol/enzimología , Virus del Dengue/genética , Técnicas de Silenciamiento del Gen , Genoma Viral , Humanos , Mitocondrias/enzimología , Palmitoil-CoA Hidrolasa/genética , ARN Interferente Pequeño , Tioléster Hidrolasas/genética , Liberación del Virus , Replicación Viral
7.
Transbound Emerg Dis ; 69(5): 2621-2633, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34890118

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne pathogen with significant human and veterinary health consequences that periodically emerges in epizootics. RVFV causes fetal loss and death in ruminants and in humans can lead to liver and renal disease, delayed-onset encephalitis, retinitis, and in some cases severe haemorrhagic fever. A live attenuated vaccine candidate (DDVax), was developed by the deletion of the virulence factors NSs and NSm from a clinical isolate, ZH501, and has proven safe and immunogenic in rodents, pregnant sheep and non-human primates. Deletion of NSm also severely restricted mosquito midgut infection and inhibited vector-borne transmission. To demonstrate environmental safety, this study investigated the replication, dissemination and transmission efficiency of DDVax in mosquitoes following oral exposure compared to RVFV strains MP-12 and ZH501. Infection and dissemination profiles were also measured in mosquitoes 7 days after they fed on goats inoculated with DDvax or MP-12. We hypothesized that DDVax would infect mosquitoes at significantly lower rates than other RVFV strains and, due to lack of NSm, be transmission incompetent. Exposure of Ae. aegypti and Cx. tarsalis to 8 log10 plaque forming units (PFU)/ml DDVax by artificial bloodmeal resulted in significantly reduced DDVax infection rates in mosquito bodies compared to controls. Plaque assays indicated negligible transmission of infectious DDVax in Cx. tarsalis saliva (1/140 sampled) and none in Ae. aegypti saliva (0/120). Serum from goats inoculated with DDVax or MP-12 did not harbour detectable infectious virus by plaque assay at 1, 2 or 3 days post-inoculation. Infectious virus was, however, recovered from Aedes and Culex bodies that fed on goats vaccinated with MP-12 (13.8% and 4.6%, respectively), but strikingly, DDvax-positive mosquito bodies were greatly reduced (4%, and 0%, respectively). Furthermore, DDVax did not disseminate to legs/wings in any of the goat-fed mosquitoes. Collectively, these results are consistent with a beneficial environmental safety profile.


Asunto(s)
Aedes , Fiebre del Valle del Rift , Virus de la Fiebre del Valle del Rift , Vacunas Atenuadas , Animales , Enfermedades de las Cabras , Cabras , Humanos , Mosquitos Vectores , Fiebre del Valle del Rift/prevención & control , Ovinos , Enfermedades de las Ovejas , Vacunas Atenuadas/efectos adversos , Factores de Virulencia
8.
Front Microbiol ; 12: 743126, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34777289

RESUMEN

Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.

9.
Viruses ; 12(1)2020 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-31940824

RESUMEN

This autumn, 95 scientists and students from the Rocky Mountain area, along with invited speakers from Colorado, California, Montana, Florida, Louisiana, New York, Maryland, and India, attended the 19th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus located in the Rocky Mountains. The two-day gathering featured 30 talks and 13 posters-all of which focused on specific areas of current virology and prion protein research. The keynote presentation reviewed new tools for microbial discovery and diagnostics. This timely discussion described the opportunities new investigators have to expand the field of microbiology into chronic and acute diseases, the pitfalls of sensitive molecular methods for pathogen discovery, and ways in which microbiology help us understand disruptions in the social fabric that pose pandemic threats at least as real as Ebola or influenza. Other areas of interest included host factors that influence virus replication, in-depth analysis of virus transcription and its effect on host gene expression, and multiple discussions of virus pathology, epidemiology as well as new avenues of diagnosis and treatment. The meeting was held at the peak of fall Aspen colors, surrounded by five mountains >11,000 ft (3.3 km), where the secluded campus provided the ideal setting for extended discussions, outdoor exercise and stargazing. On behalf of the Rocky Mountain Virology Association, this report summarizes 43 selected presentations.


Asunto(s)
Interacciones Microbiota-Huesped , Priones , Virosis , Virus , Citomegalovirus/genética , Citomegalovirus/patogenicidad , Flavivirus/patogenicidad , Humanos , Proteínas Priónicas , Retroviridae/genética , Retroviridae/patogenicidad , Simplexvirus/genética , Simplexvirus/patogenicidad , Sociedades Científicas , Virosis/diagnóstico , Virosis/epidemiología , Virosis/terapia
10.
Viruses ; 11(1)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577629

RESUMEN

This autumn, approximately 100 scientists and students from the Rocky Mountain area along with invited speakers attended the 18th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus. The two-day gathering featured 31 talks and 33 posters all of which focused on specific areas of current virology and prion protein research. Since the keynote presentation focused on the oligoadenylate synthetase-ribonuclease L pathway the main area of focus was on host⁻virus interactions, however other areas of interest included virus vectors, current models of virus infections, prevention and treatment of virus infections, separate sessions on RNA viruses and prion proteins, and a special talk highlighting various attributes of targeted next-generation sequencing. The meeting was held at the peak of the fall Aspen colors surrounded by five mountains >11000 ft (3.3 km) where the secluded campus provided the ideal setting for extended discussions and outdoor exercise. On behalf of the Rocky Mountain Virology Association, this report summarizes 42 selected presentations.


Asunto(s)
Interacciones Microbiota-Huesped , Investigación , Sociedades Científicas , 2',5'-Oligoadenilato Sintetasa , Endorribonucleasas , Humanos , Proteínas Priónicas , Priones , Virus ARN , Virosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...