Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Polymers (Basel) ; 14(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35566886

RESUMEN

Currently, the provisional stenting technique is the gold standard in revascularization of lesions located in the left main (LM) bifurcation. The benefit of the routine kissing balloon technique (KBI) in bifurcation lesions is still debated, particularly following the single stent treatment. We compared the latest-generation drug-eluting stent (DES) with no side branch (SB) dilatation "keep it open" technique (KIO) vs. KBI technique vs. bifurcation dedicated drug-eluting stent (BD-DES) implantation. In vitro testing was performed under a static condition in bifurcation silicone vessel models. All the devices were implanted in accordance with the manufacturers' recommendations. As a result, computational fluid dynamics (CFD) analysis demonstrated a statistically higher area of high shear rate in the KIO group when compared to KBI. Likewise, the maximal shear rate was higher in number in the KIO group. Floating strut count based on the OCT imaging was significantly higher in KIO than in KBI and BD-DES. Furthermore, according to OTC analysis, the thrombus area was numerically higher in both KIO and KBI than in the BD-DES. Scanning electron microscopy (SEM) analysis shows the highest degree of strut coating damage in the KBI group. This model demonstrated significant differences in CFD analysis at SB ostia with and without KBI optimization in the LM setting. The adoption of KBI was related to a meaningful reduction of flow disturbances in conventional DES and achieved results similar to BD-DES.

3.
Int J Cardiol ; 353: 43-45, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35143874

RESUMEN

BACKGROUND: Currently, there exists differing conclusions on the role of acute stent malapposition and its role in stent thrombosis (ST). The European Association of Percutaneous Cardiovascular Interventions (EAPCI) consensus recommends that acute malapposition <0.4 mm with longitudinal extension <1 mm need not be corrected since there is no clear correlation of malapposition with adverse clinical outcomes. However, malapposition was identified as the main mechanism of ST in the Bern and PESTO registries, and one of the three leading mechanism in the PRESTIGE study. METHODS: In this study, a validated perfused benchtop thrombosis model was deployed to evaluate the role of both stent under-expansion (UE) and acute stent malapposition (MA) on thrombus formation in vitro in a controlled reproducible environment. RESULTS: The results showed that UE alone did not result in acute thrombus formation, but UE together with MA did. The data suggested that a MA distance of 0.25 mm led to significant thrombus formation; and a positive correlation exists between the longitudinal extension of the MA and the thrombus volume formed. CONCLUSION: Experiments in this in vitro model demonstrated that platelets and a thrombosis cascade were activated and developed around large segments of malapposed stent. This was significantly more thrombus formation than in the under-expanded stent region.


Asunto(s)
Intervención Coronaria Percutánea , Trombosis , Plaquetas , Humanos , Intervención Coronaria Percutánea/efectos adversos , Stents/efectos adversos , Trombosis/diagnóstico por imagen , Trombosis/etiología , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento
4.
J Mech Behav Biomed Mater ; 125: 104977, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34814078

RESUMEN

Current generation of bioresorbable coronary scaffolds (BRS) posed thrombogenicity and deployment issues owing to its thick struts and overall profile. To this end, we hypothesize that the use of nanocomposite materials is able to provide improved material properties and sufficient radial strength for the intended application even at reduced strut thickness. The nanocomposite formulations of tantalum dioxide (Ta2O5), L-lactide functionalized (LA)-Ta2O5, hydroxyapatite (HA) and LA-HA with poly-l-lactic acid (PLLA) were evaluated in this study. Results showed that tensile modulus and strength were enhanced with non-functionalized nanofillers up until 15 wt% loading, whereas ductility was compromised. On the other hand, functionalized nanofillers/PLLA exhibited improved nanofiller dispersion which resulted higher tensile modulus, strength, and ductility. Selected nanocomposite formulations were evaluated using finite element analysis (FEA) of a stent with varying strut thickness (80, 100 and 150 µm). FEA data has shown that nanocomposite BRS with thinner struts (80-100 µm) made with 15 wt% LA-Ta2O5/PLLA and 10 wt% LA-HA/PLLA have increased radial strength, stiffness and reduced recoil compared to PLLA BRS at 150 µm. The reduced strut thickness can potentially mitigate issues such as scaffold thrombosis and promote re-endothelialisation of the vessel.


Asunto(s)
Implantes Absorbibles , Nanopartículas , Análisis de Elementos Finitos , Poliésteres , Stents
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA