Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuroimage ; : 120653, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38795798

RESUMEN

Perivascular cerebrospinal fluid (pCSF) flow is a key component of the glymphatic system. Arterial pulsation has been proposed as the main driving force of pCSF influx along the superficial and penetrating arteries; however, evidence of this mechanism in humans is limited. We proposed an experimental framework of dynamic diffusion tensor imaging with low b-values and ultra-long echo time (dynDTIlow-b) to capture pCSF flow properties during the cardiac cycle in human brains. Healthy adult volunteers (aged 17-28 years; seven men, one woman) underwent dynDTIlow-b using a clinical 3T scanner (MAGNETOM Prisma, Siemens Healthcare, Erlangen, Germany) with simultaneously recorded cardiac output. The results showed that diffusion tensors reconstructed from pCSF were mainly oriented in the direction of the neighboring arterial flow. When switching from vasoconstriction to vasodilation, the axial and radial diffusivities of the pCSF increased by 5.7% and 4.94%, respectively, suggesting that arterial pulsation alters the pCSF flow both parallel and perpendicular to the arterial wall. DynDTIlow-b signal intensity at b=0 s/mm2 (i.e., T2-weighted, [S(b=0 s/mm2)]) decreased in systole, but this change was ∼7.5% of a cardiac cycle slower than the changes in apparent diffusivity, suggesting that changes in S(b=0 s/mm2) and apparent diffusivity arise from distinct physiological processes and potential biomarkers associated with perivascular space volume and pCSF flow, respectively. Additionally, the mean diffusivities of white matter showed cardiac-cycle dependencies similar to pCSF, although a delay relative to the peak time of S(b=0 s/mm2) was present, suggesting that dynDTIlow-b could potentially reveal the dynamics of magnetic resonance imaging-invisible pCSF surrounding small arteries and arterioles in white matter; this delay may result from pulse wave propagation along penetrating arteries. In conclusion, the vasodilation-induced increases in axial and radial diffusivities of pCSF and mean diffusivities of white matter are consistent with the notion that arterial pulsation can accelerate pCSF flow in human brain. Furthermore, the proposed dynDTIlow-b technique can capture various pCSF dynamics in artery pulsation.

2.
ACS Appl Mater Interfaces ; 14(15): 17022-17031, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380773

RESUMEN

Corneal neovascularization (CNV) is a common disease that affects the vision ability of more than 1 million people annually. Small interfering RNA (siRNA) delivery nanoparticle platforms are a promising therapeutic modality for CNV treatment. However, the efficient delivery of siRNA into cells and the effective release of siRNA from delivery vehicles in a particular cell type challenge effective RNAi clinical application for CNV suppression. This study reports the design of a novel reactive oxygen species (ROS)-responsive lipid nanoparticle for siRNA delivery into corneal lesions for enhanced RNAi as a potential CNV treatment. We demonstrated that lipid nanoparticles could efficiently deliver siRNA into human umbilical vein endothelial cells and release siRNA for enhanced gene silencing by using the upregulated ROS of CNV to promote lipid nanoparticle degradation. Moreover, the subconjunctival injection of siRNA nanocomplexes into corneal lesions effectively knocked down vascular endothelial growth factor expression and suppressed CNV formation in an alkali burn model. Thus, we believe that the strategy of using ROS-responsive lipid nanoparticles for enhanced RNAi in CNV could be further extended to a promising clinical therapeutic approach to attenuate CNV formation.


Asunto(s)
Neovascularización de la Córnea , Nanopartículas , Neovascularización de la Córnea/tratamiento farmacológico , Neovascularización de la Córnea/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Liposomas , Oxígeno/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Chem Commun (Camb) ; 56(47): 6368-6371, 2020 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32390035

RESUMEN

The real-time and reversible detection of cellular glutathione and oxidative stress challenges the study of the redox homeostasis of biological systems. We report herein a modular approach to design the Michael addition between glutathione and coumarin derivatives for fluorescence imaging of the reversible and dynamic change of oxidative stress in living cells and the rat brain.


Asunto(s)
Encéfalo/diagnóstico por imagen , Colorantes Fluorescentes/química , Imagen Óptica , Fotones , Animales , Encéfalo/metabolismo , Línea Celular Tumoral , Glutatión/análisis , Glutatión/metabolismo , Células HeLa , Humanos , Estructura Molecular , Estrés Oxidativo , Ratas , Espectrometría de Fluorescencia , Factores de Tiempo
4.
J Am Chem Soc ; 141(45): 18136-18141, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31589435

RESUMEN

The selective and temporal control of protein activity in living cells provides a powerful tool to manipulate cellular function and to develop pro-protein therapeutics (PPT) for targeted therapy. In this work, we reported a facile but general chemical approach to design PPT by modulating protein activity in response to endogenous enzyme of disease cells, and its potential for targeted cancer therapy. We demonstrated that the chemical modification of a protein with quinone propionic acid (QPN), a ligand that could be reduced by tumor-cell-specific NAD(P)H dehydrogenase [quinone] 1 (NQO1), was reversible in the presence of NQO1. Importantly, the QPN-modified cytochrome c (Cyt c-QPN) and ribonuclease A (RNase A-QPN) showed NQO1-regulated protein activity in a highly selective manner. Furthermore, the intracellular delivery of RNase A-QPN using a novel type of lipid-based nanoparticles, and subsequent protein activation by cellular NQO1, selectively inhibit cancer cell growth in vitro and effectively suppress tumor growth in vivo. We believe that our approach increases the number of potentially useful chemical tools for reversibly controlling the structure and function of protein using a disease-cell-specific enzyme, opening opportunities in the study of dynamic biological processes and developing precise protein therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Citocromos c/química , Proteínas Fluorescentes Verdes/química , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Profármacos/farmacología , Ribonucleasa Pancreática/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Proliferación Celular/efectos de los fármacos , Citocromos c/metabolismo , Portadores de Fármacos/química , Ensayos de Selección de Medicamentos Antitumorales , Técnicas de Silenciamiento del Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/química , NAD(P)H Deshidrogenasa (Quinona)/genética , Oxidación-Reducción , Profármacos/química , Profármacos/metabolismo , Propionatos/química , Propionatos/metabolismo , Quinonas/química , Quinonas/metabolismo , Ribonucleasa Pancreática/química , Ribonucleasa Pancreática/metabolismo
5.
Chem Commun (Camb) ; 55(56): 8170-8173, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31241120

RESUMEN

Lipid-complexed small interfering RNA (siRNA) nanoparticles are promising gene regulation materials with excellent genetic, but little cellular, selectivity. Herein, we report a chemical strategy to enhance the gene silencing selectivity of these nanoparticles against cancer cells through the covalent integration of a reactive oxygen species (ROS)-degradable thioketal into the lipid nanoparticles. These lipid nanoparticles can efficiently deliver siRNA into cells, and selectively silence cancer cell gene expression in response to the high levels of intracellular ROS in cancer cells.


Asunto(s)
Silenciador del Gen , Lípidos/química , Nanopartículas/química , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...