Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 349: 123932, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583796

RESUMEN

By analyzing environmental and meteorological monitoring data over recent years of 2015-2022, the Twain-Hu Basin (THB) in central China was identified as a regional O3 pollution center over China with the highest increasing trend at 1.10 %⸱yr-1 in interannual variations of O3 concentrations with deteriorating O3 pollution over recent years. We explored the spatiotemporal variations in O3 pollution in the THB with ozone suppression (OS) under high air temperature over metropolitan, small urban, and mountainous areas. The bipolarized interannual trends in interannual O3 variations in urban and mountainous areas over central China were characterized with the increasing and decreasing 90th percentiles of the daily maximum 8-h (MDA8-90) O3 concentrations respectively in polluted urban areas and clean mountainous areas over recent eight years. The changes of the near-surface O3 concentrations with air temperature exhibited the inflection points of OS from increasing to decreasing O3 at air temperature of 30.5 °C in mountainous areas, 32.5 °C in small urban areas, and 34.5 °C in metropolitan areas, and the intensity of OS was estimated in the ranking with mountainous areas (-2.30 µg⸱m-3⸱°C-1) > small urban areas (-1.96 µg⸱m-3⸱°C-1) > metropolitan areas (-1.54 µg⸱m-3⸱°C-1), indicating that the OS was more significant over the lower-O3 mountainous areas. This study has implications for understanding O3 pollution variations with the meteorological drivers.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Ozono , Ozono/análisis , China , Monitoreo del Ambiente/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Calor , Temperatura , Ciudades
2.
J Hazard Mater ; 438: 129521, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35816795

RESUMEN

The behavior and toxicity of nanoparticles could be affected significantly by the ubiquitous natural organic matter (NOM) in aquatic environments. However, the influence of NOM on nanoparticles along the food chain remains largely unknown. This study constructed bacteria Escherichia coli (E. coli) - protozoa Tetrahymena thermophila (T. thermophila) to evaluate the influence of NOM on the bioaccumulation, trophic transfer and toxicity of silver nanoparticles (Ag NPs). Results demonstrated that NOM could reduce the toxicity of Ag NPs to E. coli and T. thermophila by different influence mechanisms (e.g., reduce Ag NPs accumulation or complex with dissolved silver ion (Ag+)) which related to the type of NOM and organisms. Moreover, Ag NPs can be transferred and biomagnified to T. thermophila via trophic transfer. Three typical NOM could significantly increase the trophic transfer factors of Ag NPs ranging from 1.16 to 2.49, which may be ascribed to NOM reducing the capacity for T. thermophila to excrete total silver (Ag) as NOM could significantly change the form of Ag. These findings provide a novel insight into the impact of NOM on the ecological risk posed by Ag NPs through the food chain and emphasize the need to understand further the interactions between nanoparticles and NOM in various ecosystems.


Asunto(s)
Nanopartículas del Metal , Plata , Ecosistema , Escherichia coli , Cadena Alimentaria , Nanopartículas del Metal/toxicidad , Plata/toxicidad
3.
Water Res ; 215: 118280, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35305490

RESUMEN

The entering of silver nanoparticles (Ag NPs) in natural environments constantly increases due to their widespread production and application. While the environmental behavior, impacts, and fate of Ag NPs were critically assessed, the main challenge represents continuous tracking and quantification of Ag NPs in environmental and biological matrices. A group of labeled Ag NPs with gold cores (Au@Ag NPs) was developed for distinguishing between pristine Ag NPs and their other forms, and we comprehensively compared their physicochemical properties, environmental behavior, and biological effects with unlabeled Ag NPs. The electron transfer process from the Au core to the Ag shell gradually decreased with the increase of Ag shell thickness, then the inhibition of Ag+ release induced by the Au core was gradually alleviated, but the generation of superoxide radicals was intensified sharply. Then, the effect of the Au core on the dissolution capacity and free radicals' generation significantly altered the biological toxicity of Ag NPs, and the influence degree was related to the test organism's species. Nevertheless, the Au core retained the surface properties of Ag NPs, leading to the uptake of Au@Ag NPs, entirely consistent with the behavior of unlabeled Ag NPs. These findings confirmed that Au core labeling provides new opportunities for tracking Ag NPs in environmental and biological systems, and the exposure conditions and test organisms should be carefully assessed before employing the Au core labeling technology.


Asunto(s)
Nanopartículas del Metal , Oro/química , Nanopartículas del Metal/química , Plata/química , Propiedades de Superficie
4.
J Hazard Mater ; 415: 125579, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33721782

RESUMEN

Although carbon nanomaterials (CNMs) commonly exist throughout the aquatic environment, their effect on arsenic (As) distribution and toxicity is unclear. In this study, arsenite accumulation, transformation, subcellular distribution, and enzyme activity were assessed in adult zebrafish (Danio rerio) intestines, heads and muscles, following co-exposure to arsenite and CNMs with different structures (single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), fullerene (C60), graphene oxide (GO), and graphene (GN)). Results show that GN and GO promoted As toxicity in D. rerio, as carriers increasing total As accumulation in the intestine, resulting in arsenite adsorbed by GO and GN being released and transformed mainly into moderately-toxic monomethylarsonic acid (MMA), which was mostly distributed in organelles and metallothionein-like proteins (MTLPs). Moreover, GO and GN influenced As species distribution in D. rerio due to the excellent electron transfer ability. However, the effect was marginal for SWCNT, MWCNT and C60, because of the different structure and suspension stability in fish-culture water. In addition, in the muscle and head tissues, As was mainly distributed in cellular debris in the forms of dimethylarsinic acid (DMA) and arsenobetaine (AsB). These findings help better understand the influence of CNMs on the mechanism of As toxicity in natural aquatic environments.


Asunto(s)
Arsenitos , Fulerenos , Nanotubos de Carbono , Animales , Arsenitos/toxicidad , Agua Dulce , Nanotubos de Carbono/toxicidad , Pez Cebra
5.
Bull Environ Contam Toxicol ; 106(5): 786-791, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33787975

RESUMEN

The studies on how humic acid (HA) influences the oxidative stress of arsenic in aquatic organism is limited. Using Danio rerio as case study, we explored the oxidative stress effects in aquatic organism after 96 h exposure to the HA and arsenic. Results revealed the co-exposure of HA and arsenite elevated the superoxide dismutase activities and downgraded the malondialdehyde. Thus, we speculate that HA may alleviate the oxidative stress induced by arsenite, which may be caused by the HA's coating in combination with the complexation of arsenite and HA. In addition, HA acted as the reactive oxygen species scavenger, promising to eliminate the oxygen free radicals. Contrastingly, HA may impact little on the arsenate exposure. This study can help better understand oxidative stress mechanism of co-exposure of arsenic and HA in aquatic environment.


Asunto(s)
Arsénico , Arsenitos , Animales , Arseniatos/toxicidad , Arsenitos/toxicidad , Sustancias Húmicas , Estrés Oxidativo , Pez Cebra
6.
Water Res ; 184: 116216, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32721761

RESUMEN

Dissolved organic matter (DOM) in aquatic ecosystems reshapes the surface of nanoparticles (NPs) greatly. Understanding how these changes influence the bioavailability of NPs is critical for accurately predicting the ecological risks of NPs. A quantitative model based on the two-step internalization process enabled the differentiation between the adhesion ability of NPs to membranes and the internalization capacity. Using protozoa Tetrahymena thermophila as the test organism, fluorescein isothiocyanate-modified silica NPs (FITC-SiO2) and silica-coated gold NPs (Au@SiO2) were prepared to validate the model and study the influence of DOM on uptake. DOM reduced the ability of Au@SiO2 to adhere onto cell membranes and the inhibitory effect of bovine serum albumin (BSA) and ß-lactoglobulin was higher due to their higher molecular weights and the weaker interaction. Moreover, DOM increased the internalization capacity. 80% Au@SiO2 was internalized in the presence of humic acid (HA), over 90% Au@SiO2 was internalized in the presence of the two proteins, whereas only 60% were internalized by the control group. Next, the specific recognition of the cell internalization in the presence of DOM was confirmed. We concluded that the traditional "accumulation" may misestimate the true biological effect caused by NPs coated with DOM. NPs coated with highly bioavailable DOM pose a greater risk to aquatic ecosystems because they are more likely to be internalized by living organisms.


Asunto(s)
Nanopartículas , Dióxido de Silicio , Ecosistema , Agua Dulce , Oro
7.
Ecotoxicol Environ Saf ; 172: 136-143, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30708224

RESUMEN

The toxicity of arsenic (As) can be influenced by many environmental factors. Among them, nanomaterials can adsorb arsenic and alter its bioavailability in organisms. However, the studies on long-term effects of arsenic in the presence of nanoparticles are limited. Thus, the 21-d effect of titanium dioxide nanoparticles (nano-TiO2) on chronic toxicity of arsenic (arsenate and arsenite) was investigated in two generations of Daphnia magna. The exposed concentration of nano-TiO2 was 1 mg/L and the concentration of As(Ⅲ) or As(Ⅴ) was 0.2 mg/L which was lower than the 48 h-NOEC (no observed effect concentration). The survival, body length, average number of offspring and time of first brood were determined. Our results indicated that the exposure to nano-TiO2 and As during the parental generation can affect the health of offspring. Nano-TiO2 was found to significantly alleviate the mortality and reproduction inhibition of As on D. magna, and the alleviation of As(Ⅴ) was more prominent than that of As(Ⅲ). It is likely that nano-TiO2 alters the metabolism and adsorption condition of arsenic in the gastrointestinal tract of D. magna. Overall, these results indicate that the increase of arsenic adsorption onto nano-TiO2 in the gut of D. magna could alleviate the toxicity of arsenic. Nonetheless, further research should be conducted to study the influence of arsenic on the multi-generations of aquatic organisms, especially when it is coexisted with other substances.


Asunto(s)
Arseniatos/toxicidad , Arsénico/toxicidad , Daphnia/efectos de los fármacos , Nanopartículas/química , Titanio/química , Adsorción , Animales , Arseniatos/farmacocinética , Arsénico/farmacocinética , Arsenitos/farmacocinética , Arsenitos/toxicidad , Disponibilidad Biológica , Daphnia/metabolismo , Concentración de Iones de Hidrógeno , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Crónica , Contaminantes Químicos del Agua/farmacocinética , Contaminantes Químicos del Agua/toxicidad
8.
Water Res ; 138: 224-233, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602088

RESUMEN

It is now widely accepted that coating on the nano-surface would critically dictate the uptake and cytotoxicity of engineering nanomaterials. However, the influence of natural organic matter (NOM) on the surface is quite limited to humic substances, while the diversity of NOM is neglected. In the present study, we tried to investigate the change of surface in the coexistence of bovine serum albumin (BSA) and humic acid (HA). The isothermal titration calorimetric measurements show that HA can combine with BSA in both freshwater or seawater, however, the patterns are different. In freshwater, HA lowered the adsorption of BSA on PVP-capped AgNPs through complexation with BSA, which prevented the contact of sulfur in BSA with PVP-AgNPs. Then in seawater, BSA retained its sulfur availability to bind with PVP-AgNPs. Furthermore, the toxicity of PVP-AgNPs incubated in the BSA/HA solution was evaluated by measuring the level of reactive oxygen species generated by Escherichia coli. The results indicated that, in seawater, the adsorbed BSA promoted the toxicity of PVP-AgNPs in the presence of Ca2+ and Mg2+, but the presence of HA limited this effect.


Asunto(s)
Sustancias Húmicas , Nanopartículas del Metal/química , Povidona/química , Albúmina Sérica Bovina/química , Plata/química , Contaminantes del Agua/química , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Agua Dulce , Sustancias Húmicas/toxicidad , Nanopartículas del Metal/toxicidad , Povidona/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Agua de Mar , Albúmina Sérica Bovina/toxicidad , Plata/toxicidad
9.
Ecotoxicol Environ Saf ; 151: 42-48, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29306069

RESUMEN

Despite the great progress made in metal-induced toxicity mechanisms, a critical knowledge gap still exists in predicting adverse effects of heavy metals on living organisms in the natural environment, particularly during exposure to multi-metals. In this study, a multi-metal interaction model of Daphnia manga was developed in an effort to provide reasonable explanations regarding the joint effects resulting from exposure to multi-metals. Metallothionein (MT), a widely used biomarker, was selected. In this model, MT was supposed to play the role of a crucial transfer protein rather than detoxifying protein. Therefore, competitive complexation of metals to MT could highly affect the cellular metal redistribution. Thus, competitive complexation of MT in D. magna with metals like Pb2+, Cd2+ and Cu2+ was qualitatively studied. The results suggested that Cd2+ had the highest affinity towards MT, followed by Pb2+ and Cu2+. On the other hand, the combination of MT with Cu2+ appeared to alter its structure which resulted in higher affinity towards Pb2+. Overall, the predicted bioaccumulation of metals under multi-metal exposure was consisted with earlier reported studies. This model provided an alternative angle for joint effect through a combination of kinetic process and internal interactions, which could help to develop future models predicting toxicity to multi-metal exposure.


Asunto(s)
Daphnia/efectos de los fármacos , Metalotioneína/metabolismo , Metales Pesados/toxicidad , Modelos Biológicos , Contaminantes Químicos del Agua/toxicidad , Animales , Daphnia/metabolismo , Inactivación Metabólica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...