Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Neurol ; 12: 540660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149584

RESUMEN

The nerve growth factor (NGF) plays an important role in the regulation of neuropathic pain. It has been demonstrated that calcitonin gene-related peptide (CGRP), a well-known contributor to neurogenic inflammation, increases neuroinflammatory pain induced by NGF. The inflammatory mediator that NGF most strongly induces is C-C chemokine ligand 19 (CCL19), which can recruit inflammatory cells by binding to the receptor CCR7 followed by promoting the response of neuroinflammation. However, the regulatory mechanism of NGF and CCL19 in tooth movement orofacial pain and the interaction between both are still unclear. In this study, male Sprague-Dawley rats were used to study the modulation of NGF on orofacial pain through CCL19 and the role of each in tooth movement pain in rats. The expression levels of CCL19 mRNA and protein were determined by real-time PCR and immunofluorescence, respectively. Pain levels were assessed by measuring the rats' bite force, which drops as pain rises. Meanwhile, by verifying the relationship between CGRP and CCL19, it was laterally confirmed that NGF could modulate tooth movement-induced mechanical hyperalgesia through CCL19. The results showed that the expression level of CCL19 rose with the increased NGF, and neurons expressing CGRP can express stronger CCL19. Compared with the baseline level, the bite force for all rats dropped sharply on day 1, reached its lowest level on day 3, and recovered gradually on day 5. All results indicated that NGF played an important role in tooth movement orofacial pain via positively regulating CCL19 expression in the trigeminal ganglia of rats. Additionally, CCL19 increased the sensitivity to experimental tooth movement orofacial pain. NGF can regulate CCL19 expression, although it may regulate other inflammatory pathways as well. This is the first report on the interactions and modulations of tooth movement orofacial pain by NGF through CCL19 in rats.

2.
Arch Oral Biol ; 117: 104817, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32603879

RESUMEN

OBJECTIVES: To investigate the effect and mechanism of botulinum neurotoxin type A (BoNT/A) in the modulation of orofacial nociception induced by orthodontic tooth movement in rats. METHODS: An orofacial nociception model was established in male Sprague-Dawley rats by ligating closed-coil springs between incisors and ipsilateral molars. There were two group sets of animals. For the first group set, 120 rats were randomly divided into four groups: no-force group (n = 30), force + saline group (n = 30), force + low dose BoNT/A group (1U/6 µL, n = 30), and force + high dose BoNT/A group (1U/6 µL, n = 30). BoNT/A and saline were injected into periodontal ligament to explore the nociceptive effect of BoNT/A. Ipsilateral trigeminal ganglia (TG) were harvested for detecting the expression levels of nociceptin/orphanin-FQ (N/OFQ). For the second group set, 36 rats were randomly divided into three force groups: BoNT/A + saline group (n = 12), BoNT/A + UFP-101 group (n = 12), and saline + UFP-101 group (n = 12). A potent N/OFQ receptor (NOP) antagonist (UFP-101) was used to examine the role of N/OFQ in BoNT/A-induced antinociception. Tooth-movement nociception level of all groups was evaluated by bite force and rat grimace scale (RGS) at baseline, day 1, day 3, day 5, day 7, day 14. RESULTS: The behavioral assessments showed the orofacial nociception level in the force + low dose BoNT/A group and force + high dose BoNT/A group were lower than that in the force + saline group. No significant difference was observed in orofacial nociception among no-force group, force + low dose and force + high dose group. The expression levels of N/OFQ in TG were elevated from day 1 and maintained a high level, presenting in descending order among the force + high dose, force + low dose, force + saline and no-force group, respectively. The nociception level of the BoNT/A + UFP-101 group was higher than that of the BoNT/A + saline group. No significant difference was observed between the BoNT/A + UFP-101 group and the saline + UFP-101 group. CONCLUSIONS: BoNT/A can exert an antinociceptive effect on orofacial nociception induced by tooth movement by stimulating the expression of N/OFQ in TG.


Asunto(s)
Toxinas Botulínicas Tipo A/uso terapéutico , Nocicepción , Péptidos Opioides/metabolismo , Receptores Opioides/metabolismo , Técnicas de Movimiento Dental/efectos adversos , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Nociceptina
3.
Neuroscience ; 442: 274-285, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32592826

RESUMEN

This study aimed to explore the role of acid-sensing ion channel 3 (ASIC3) in the modulation of tooth mechanical hyperalgesia induced by orthodontic tooth movement. In male Sprague-Dawley rats, closed coil springs were ligated between mandibular incisors and molars to mimic orthodontic tooth movement. Bite force was assessed to evaluate tooth mechanical hyperalgesia. The alveolar bone, trigeminal ganglia, and trigeminal nucleus caudalis underwent immunohistochemical staining and immunoblotting for ASIC3. The inferior alveolar nerves were transected to explore the interaction between the periodontal sensory endings and trigeminal ganglia. The role of ASIC3 in trigeminal ganglia was further explored with lentivirus-mediated ASIC3 ribonucleic acid interference. Results showed that ASIC3 was expressed in the periodontal Ruffini endings and expression of ASIC3 protein was elevated in periodontal tissues, trigeminal ganglia, and trigeminal nucleus caudalis, following orthodontic tooth movement. ASIC3 agonists and antagonists significantly aggravated and mitigated tooth mechanical hyperalgesia, respectively. ASIC3 expression decreased after inferior alveolar nerve transection in periodontal tissues. Both in vitro and vivo, the lentivirus vector carrying ASIC3 shRNA inhibited ASIC3 expression and relieved tooth mechanical hyperalgesia. To conclude, ASIC3 is important in the modulation of tooth mechanical hyperalgesia induced by orthodontic tooth movement. Further, the role of ASIC3 in the modulation of pain in periodontal tissues is regulated by trigeminal ganglia. An adjuvant analgesic therapy targeting ASIC3 could alleviate orthodontic movement-associated mechanical hyperalgesia in rats.


Asunto(s)
Canales Iónicos Sensibles al Ácido , Hiperalgesia , Animales , Hiperalgesia/terapia , Masculino , Ratas , Ratas Sprague-Dawley , Técnicas de Movimiento Dental , Ganglio del Trigémino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...