Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
1.
Cancer Lett ; 600: 217161, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39117067

RESUMEN

Previous research has revealed that platelets promote tumor metastasis by binding to circulating tumor cells (CTCs). However, the role of platelets in epithelial-mesenchymal transition (EMT) of cancer cells at the primary tumor site, the crucial initial step of tumor metastasis, remains to be elucidated. Here, we found that platelet releasate enhanced EMT and motility of hepatocellular carcinoma (HCC) cells via AMPK/mTOR-induced autophagy. RNA-seq indicated that platelet releasate altered TGF-ß signaling pathway of cancer cells. Inhibiting TGFBR or deleting platelet TGF-ß1 suppressed AMPK/mTOR pathway activation and autophagy induced by platelet releasate. Compared with Pf4cre-; Tgfb1fl/fl mice, HCC orthotopic models established on Pf4cre+; Tgfb1fl/fl mice showed reduced TGF-ß1 in primary tumors, which corresponded with decreased cancer cell EMT, autophagy, migration ability and tumor metastasis. Inhibition of autophagy via Atg5 knockdown in cancer cells negated EMT and metastasis induced by platelet-released TGF-ß1. Clinically, higher platelet count correlated with increased TGF-ß1, LC3 and N-cad expression in primary tumors of HCC patients, suggesting a link between platelets and HCC progression. Our study indicates that platelets promote cancer cell EMT in the primary tumor and HCC metastasis through TGF-ß1-induced HCC cell autophagy via the AMPK/mTOR pathway. These findings offer novel insights into the role of platelets in HCC metastasis and the potential therapeutic targets for HCC metastasis.

2.
Adv Sci (Weinh) ; : e2310304, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39072947

RESUMEN

Despite the success of immunotherapy in treating hepatocellular carcinoma (HCC), HCC remains a severe threat to health. Here, a crucial transcription factor, SOX12, is revealed that induces the immunosuppression of liver tumor microenvironment. Overexpressing SOX12 in HCC syngeneic models increases intratumoral regulatory T-cell (Treg) infiltration, decreases CD8+T-cell infiltration, and hastens HCC metastasis. Hepatocyte-specific SOX12 knockout attenuates DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SOX12 knock-in accelerates these effects. Mechanistically, SOX12 transcriptionally activates C-C motif chemokine ligand 22 (CCL22) expression to promote the recruitment and suppressive activity of Tregs. Moreover, SOX12 transcriptionally upregulates CD274 expression to suppress CD8+T-cell infiltration. Either knockdown of CCL22 or PD-L1 dampens SOX12-mediated HCC metastasis. Blocking of CC chemokine receptor 4 (CCR4), a receptor for CCL22, by inhibitor C-021 or Treg-specific knockout of CCR4 inhibits SOX12-mediated HCC metastasis. Transforming growth factor-ß1 (TGF-ß1)/TGFßR1-Smad2/3/4 is identified as a key upstream signaling for SOX12 overexpression in HCC cells. Combining C-021 or TGFßR1 inhibitor galunisertib with anti-PD-L1 exhibits an enhanced antitumor effect in two HCC models. Collectively, the findings demonstrate that SOX12 contributes to HCC immunosuppression through the CCL22/CCR4-Treg and PD-L1-CD8+T axes. Blocking of CCR4 or TGFßR1 improves the efficacy of anti-PD-L1 in SOX12-mediated HCC.

3.
Cancer Commun (Lond) ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030964

RESUMEN

BACKGROUND: N4-acetylcytidine (ac4C) represents a novel messenger RNA (mRNA) modification, and its associated acetyltransferase N-acetyltransferase 10 (NAT10) plays a crucial role in the initiation and progression of tumors by regulating mRNA functionality. However, its role in hepatocellular carcinoma (HCC) development and prognosis is largely unknown. This study aimed to elucidate the role of NAT10-mediated ac4C in HCC progression and provide a promising therapeutic approach. METHODS: The ac4C levels were evaluated by dot blot and ultra-performance liquid chromatography-tandem mass spectrometry with harvested HCC tissues. The expression of NAT10 was investigated using quantitative real-time polymerase chain reaction, western blotting, and immunohistochemical staining across 91 cohorts of HCC patients. To explore the underlying mechanisms of NAT10-ac4C in HCC, we employed a comprehensive approach integrating acetylated RNA immunoprecipitation and sequencing, RNA sequencing and ribosome profiling analyses, along with RNA immunoprecipitation, RNA pull-down, mass spectrometry, and site-specific mutation analyses. The drug affinity responsive targets stability, cellular thermal shift assay, and surface plasmon resonance assays were performed to assess the specific binding of NAT10 and Panobinostat. Furthermore, the efficacy of targeting NAT10-ac4C for HCC treatment was elucidated through in vitro experiments using HCC cells and in vivo HCC mouse models. RESULTS: Our investigation revealed a significant increase in both the ac4C RNA level and NAT10 expression in HCC. Notably, elevated NAT10 expression was associated with poor outcomes in HCC patients. Functionally, silencing NAT10 suppressed HCC proliferation and metastasis in vitro and in vivo. Mechanistically, NAT10 stimulates the ac4C modification within the coding sequence (CDS) of high mobility group protein B2 (HMGB2), which subsequently enhances HMGB2 translation by facilitating eukaryotic elongation factor 2 (eEF2) binding to the ac4C sites on HMGB2 mRNA's CDS. Additionally, high-throughput compound library screening revealed Panobinostat as a potent inhibitor of NAT10-mediated ac4C modification. This inhibition significantly attenuated HCC growth and metastasis in both in vitro experiments using HCC cells and in vivo HCC mouse models. CONCLUSIONS: Our study identified a novel oncogenic epi-transcriptome axis involving NAT10-ac4C/eEF2-HMGB2, which plays a pivotal role in regulating HCC growth and metastasis. The drug Panobinostat validates the therapeutic potential of targeting this axis for HCC treatment.

4.
Front Oncol ; 14: 1407434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38962270

RESUMEN

Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-ß (TGF-ß) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-ß has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-ß interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-ß in HCC occurrence and development.

5.
MedComm (2020) ; 5(7): e633, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38952575

RESUMEN

cAMP responsive element binding protein 3 (CREB3), belonging to bZIP family, was reported to play multiple roles in various cancers, but its role in hepatocellular carcinoma (HCC) is still unclear. cAMP responsive element binding protein 3 like 3 (CREB3L3), another member of bZIP family, was thought to be transcription factor (TF) to regulate hepatic metabolism. Nevertheless, except for being TFs, other function of bZIP family were poorly understood. In this study, we found CREB3 inhibited growth and metastasis of HCC in vitro and in vivo. RNA sequencing indicated CREB3 regulated AKT signaling to influence HCC progression. Mass spectrometry analysis revealed CREB3 interacted with insulin receptor (INSR). Mechanistically, CREB3 suppressed AKT phosphorylation by inhibiting the interaction of INSR with insulin receptor substrate 1 (IRS1). In our study, CREB3 was firstly proved to affect activation of substrates by interacting with tyrosine kinase receptor. Besides, CREB3 could act as a TF to transactivate RNA-binding motif protein 38 (RBM38) expression, leading to suppressed AKT phosphorylation. Rescue experiments further confirmed the independence between the two functional manners. In conclusion, CREB3 acted as a tumor suppressor in HCC, which inhibited AKT phosphorylation through independently interfering interaction of INSR with IRS1, and transcriptionally activating RBM38.

6.
Cell Biol Int ; 48(8): 1069-1079, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38884348

RESUMEN

ErbB3-binding protein 1(Ebp1) has two isoforms, p42 Ebp1 and p48 Ebp1, both of which can regulate cell growth and differentiation. But these isoforms often have opposite effects, including contradictory roles in regulation of cell growth in different tissues and cells. P48 Ebp1 belongs to the full-length sequence, while conformational changes in the crystal structure of p42 Ebp1 reveals a lack of an α helix at the amino terminus. Due to the differences in the structures of these two isoforms, they have different binding partners and protein modifications. Ebp1 can function as both an oncogene and a tumor suppressor factor. However, the underlying mechanisms by which these two isoforms exert opposite functions are still not fully understood. In this review, we summarize the genes and the structures of protein of these two isoforms, protein modifications, binding partners and the association of different isoforms with diseases.


Asunto(s)
Isoformas de Proteínas , Humanos , Isoformas de Proteínas/metabolismo , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Neoplasias/metabolismo , Unión Proteica
7.
Cell Death Differ ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918619

RESUMEN

Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor, with its biological characteristics intricately linked to the activation of oncogenes. This research specifically explored CCDC137, a molecule within the CCDC family exhibiting the closest association with HCC. Our investigation aimed to unravel the role, underlying mechanisms, and potential therapeutic implications of CCDC137 in the context of HCC. We observed a close correlation between elevated CCDC137 expression and poor prognosis in HCC patients, along with a promotive effect on HCC progression in vitro and in vivo. Mechanistically, we identified LZTS2, a negative regulator of ß-catenin, as the binding protein of CCDC137. CCDC137 facilitated K48-linked poly-ubiquitination of LZTS2 at lysine 467 via recruiting E3 ubiquitin ligase ß-TrCP in the nucleus, triggering AKT phosphorylation and activation of ß-catenin pathway. Moreover, the 1-75 domain of CCDC137 was responsible for the formation of the CCDC137-LZTS2-ß-TrCP complex. Subsequently, designed peptides targeting the 1-75 domain of CCDC137 to disrupt CCDC137-LZTS2 interaction demonstrated efficacy in inhibiting HCC progression. This promising outcome was further supported by HCC organoids and patient-derived xenograft (PDX) models, underscoring the potential clinical utility of the peptides. This study elucidated the mechanism of the CCDC137-LZTS2-ß-TrCP protein complex in HCC and offered clinically significant therapeutic strategies targeting this complex.

8.
MedComm (2020) ; 5(5): e535, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741887

RESUMEN

Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.

9.
Front Med ; 18(3): 538-557, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38769281

RESUMEN

Schistosoma infection is one of the major causes of liver fibrosis. Emerging roles of hepatic progenitor cells (HPCs) in the pathogenesis of liver fibrosis have been identified. Nevertheless, the precise mechanism underlying the role of HPCs in liver fibrosis in schistosomiasis remains unclear. This study examined how autophagy in HPCs affects schistosomiasis-induced liver fibrosis by modulating exosomal miRNAs. The activation of HPCs was verified by immunohistochemistry (IHC) and immunofluorescence (IF) staining in fibrotic liver from patients and mice with Schistosoma japonicum infection. By coculturing HPCs with hepatic stellate cells (HSCs) and assessing the autophagy level in HPCs by proteomic analysis and in vitro phenotypic assays, we found that impaired autophagy degradation in these activated HPCs was mediated by lysosomal dysfunction. Blocking autophagy by the autophagy inhibitor chloroquine (CQ) significantly diminished liver fibrosis and granuloma formation in S. japonicum-infected mice. HPC-secreted extracellular vehicles (EVs) were further isolated and studied by miRNA sequencing. miR-1306-3p, miR-493-3p, and miR-34a-5p were identified, and their distribution into EVs was inhibited due to impaired autophagy in HPCs, which contributed to suppressing HSC activation. In conclusion, we showed that the altered autophagy process upon HPC activation may prevent liver fibrosis by modulating exosomal miRNA release and inhibiting HSC activation in schistosomiasis. Targeting the autophagy degradation process may be a therapeutic strategy for liver fibrosis during Schistosoma infection.


Asunto(s)
Autofagia , Exosomas , Cirrosis Hepática , MicroARNs , Células Madre , Animales , MicroARNs/metabolismo , MicroARNs/genética , Cirrosis Hepática/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/parasitología , Ratones , Humanos , Exosomas/metabolismo , Células Madre/metabolismo , Células Estrelladas Hepáticas/metabolismo , Esquistosomiasis Japónica/metabolismo , Masculino , Schistosoma japonicum/genética , Femenino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Esquistosomiasis/complicaciones , Hígado/patología , Hígado/metabolismo , Hígado/parasitología
10.
Br J Dermatol ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752336

RESUMEN

BACKGROUND: Psoriasis is a prevalent chronic inflammatory dermatosis characterized by excessive proliferation of keratinocytes. Protein lysine 2-hydroxyisobutyrylation (Khib) is a newly identified post-translational modification that regulates various biological processes. Abnormal Khib modification has been closely associated with the development of autoimmune diseases. OBJECTIVE: To investigate the abnormal Khib profile and its pathogenic role in psoriasis. METHODS: We utilized liquid chromatography-tandem mass spectrometry to analyze Khib-modified proteins in the epidermis of psoriasis and healthy controls. Mutated cells and mice with downregulated Ebp1Khib210 were generated to investigate its functional effects in psoriasis. RESULTS: The omic analysis revealed dysregulation of Khib modification in psoriatic lesions, exhibiting a distinct profile compared to controls. We observed the downregulation of Ebp1Khib210 in psoriatic lesions and IMQ-induced psoriatic mice. Notably, the expression of Ebp1Khib210 was upregulated in psoriatic patients following effective treatment. Decreased Ebp1Khib210 enhanced keratinocyte viability, proliferation, and survival while inhibiting apoptosis in vitro. Additionally, Pa2g4K210A mice with downregulated Ebp1Khib210 exhibited more severe psoriatic lesions and enhanced keratinocyte proliferation. Moreover, we found that Ebp1K210A mutation increased the interaction between Ebp1 and nuclear Akt, thereby inhibiting MDM2-mediated TIF-IA ubiquitination, and resulting to increased rRNA synthesis and keratinocyte proliferation. The downregulation of Ebp1Khib210 was attributed to inflammation-induced increases in HDAC2 expression. CONCLUSION: Our findings demonstrate that downregulation of Ebp1Khib210 promotes keratinocyte proliferation through modulation of Akt signaling and TIF-IA-mediated rRNA synthesis. These insights into Khib modification provide a better understanding of the pathogenesis of psoriasis and suggest potential therapeutic targets.

11.
Aging (Albany NY) ; 16(7): 6588-6612, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38604156

RESUMEN

BACKGROUND: Liver progenitor cells (LPCs) are a subpopulation of cells that contribute to liver regeneration, fibrosis and liver cancer initiation under different circumstances. RESULTS: By performing adenoviral-mediated transfection, CCK-8 analyses, F-actin staining, transwell analyses, luciferase reporter analyses and Western blotting, we observed that TGF-ß promoted cytostasis and partial epithelial-mesenchymal transition (EMT) in LPCs. In addition, we confirmed that TGF-ß activated the Smad and MAPK pathways, including the Erk, JNK and p38 MAPK signaling pathways, and revealed that TGFß-Smad signaling induced growth inhibition and partial EMT, whereas TGFß-MAPK signaling had the opposite effects on LPCs. We further found that the activity of Smad and MAPK signaling downstream of TGF-ß was mutually restricted in LPCs. Mechanistically, we found that TGF-ß activated Smad signaling through serine phosphorylation of both the C-terminal and linker regions of Smad2 and 3 in LPCs. Additionally, TGFß-MAPK signaling inhibited the phosphorylation of Smad3 but not Smad2 at the C-terminus, and it reinforced the linker phosphorylation of Smad3 at T179 and S213. We then found that overexpression of mutated Smad3 at linker phosphorylation sites intensifies TGF-ß-induced cytostasis and EMT, mimicking the effects of MAPK inhibition in LPCs, whereas mutation of Smad3 at the C-terminus caused LPCs to blunt TGF-ß-induced cytostasis and partial EMT. CONCLUSION: These results suggested that TGF-ß downstream of Smad3 and MAPK signaling were mutually antagonistic in regulating the viability and partial EMT of LPCs. This antagonism may help LPCs overcome the cytostatic effect of TGF-ß under fibrotic conditions and maintain partial EMT and progenitor phenotypes.


Asunto(s)
Transición Epitelial-Mesenquimal , Hígado , Sistema de Señalización de MAP Quinasas , Proteína smad3 , Células Madre , Factor de Crecimiento Transformador beta , Proteína smad3/metabolismo , Células Madre/metabolismo , Animales , Factor de Crecimiento Transformador beta/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Hígado/metabolismo , Supervivencia Celular/efectos de los fármacos , Fosforilación , Ratones , Transducción de Señal
12.
Biomed Pharmacother ; 173: 116366, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458013

RESUMEN

Hepatocellular carcinoma (HCC) has a poor prognosis, and the efficacy of current therapeutic strategies is extremely limited in advanced diseases. Our previous study reported that protein tyrosine phosphatase receptor epsilon (PTPRE) is a promoting factor in HCC progression. In this study, our objective was to evaluate the treatment effect of PTPRE inhibitors in different HCC preclinical models. Our results indicated that the PTPRE inhibitory compound 63 (Cpd-63) inhibited tumor cell proliferation, migration, and HCC organoid growth. Mechanism research revealed that Cpd-63 could inhibit the expression of MYC and MYC targets by inhibiting the activation of SRC. Additionally, we found that Cpd-63 could improve the response of sorafenib in HCC cells. In conclusion, we demonstrated that the PTPRE inhibitors represented a potential therapeutic agent for HCC management.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Sorafenib/farmacología , Sorafenib/uso terapéutico , Carcinoma Hepatocelular/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Proliferación Celular , Resistencia a Antineoplásicos
13.
Aging (Albany NY) ; 16(5): 4396-4422, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38407980

RESUMEN

Proper preclinical models for the research of colorectal cancer (CRC) and CRC liver metastases (CLM) are a clear and unmet need. Patient-derived organoids have recently emerged as a robust preclinical model, but are not available to all scientific researchers. Here, we present paired 3D organoid cell lines of CWH22 (CRC-derived) and CLM22 (CLM-derived) with sound background information and the short tandem repeats are identical to those of the normal tissue. Morphological and immunohistochemical staining, along with whole-exome sequencing (WES), confirmed that the organoids exhibited the same differentiation, molecular expression, and mutation status as the corresponding tumor tissue. Both organoids possessed mutated APC/KRAS/SMAD4/CDKN1B/KMT2C genes and wild-type TP53 and PIK3CA; stably secreted the tumor markers CEA and CA19-9, and possessed sound proliferation rates in vitro, as well as subcutaneous tumorigenicity and liver metastatic abilities in vivo. IC50 assays confirmed that both cell lines were sensitive to 5-fluorouracil, oxaliplatin, SN-38, and sotorasib. WES and karyotype analyses revealed the genomic instability status as chromosome instability. The corresponding adherent cultured CWH22-2D/CLM22-2D cells were established and compared with commonly used CRC cell lines from the ATCC. Both organoids are publicly available to all researchers and will be useful tools for specific human CRC/CLM studies both in vitro and in vivo.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Oxaliplatino , Neoplasias Hepáticas/patología , Organoides/patología , Línea Celular
14.
Clin Transl Med ; 14(2): e1529, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38303609

RESUMEN

OBJECTIVE: Our study was to elucidate the role of RNA helicase DEAD-Box Helicase 17 (DDX17) in NAFLD and to explore its underlying mechanisms. METHODS: We created hepatocyte-specific Ddx17-deficient mice aim to investigate the impact of Ddx17 on NAFLD induced by a high-fat diet (HFD) as well as methionine and choline-deficient l-amino acid diet (MCD) in adult male mice. RNA-seq and lipidomic analyses were conducted to depict the metabolic landscape, and CUT&Tag combined with chromatin immunoprecipitation (ChIP) and luciferase reporter assays were conducted. RESULTS: In this work, we observed a notable increase in DDX17 expression in the livers of patients with NASH and in murine models of NASH induced by HFD or MCD. After introducing lentiviruses into hepatocyte L02 for DDX17 knockdown or overexpression, we found that lipid accumulation induced by palmitic acid/oleic acid (PAOA) in L02 cells was noticeably weakened by DDX17 knockdown but augmented by DDX17 overexpression. Furthermore, hepatocyte-specific DDX17 knockout significantly alleviated hepatic steatosis, inflammatory response and fibrosis in mice after the administration of MCD and HFD. Mechanistically, our analysis of RNA-seq and CUT&Tag results combined with ChIP and luciferase reporter assays indicated that DDX17 transcriptionally represses Cyp2c29 gene expression by cooperating with CCCTC binding factor (CTCF) and DEAD-Box Helicase 5 (DDX5). Using absolute quantitative lipidomics analysis, we identified a hepatocyte-specific DDX17 deficiency that decreased lipid accumulation and altered lipid composition in the livers of mice after MCD administration. Based on the RNA-seq analysis, our findings suggest that DDX17 could potentially have an impact on the modulation of lipid metabolism and the activation of M1 macrophages in murine NASH models. CONCLUSION: These results imply that DDX17 is involved in NASH development by promoting lipid accumulation in hepatocytes, inducing the activation of M1 macrophages, subsequent inflammatory responses and fibrosis through the transcriptional repression of Cyp2c29 in mice. Therefore, DDX17 holds promise as a potential drug target for the treatment of NASH.


Asunto(s)
Trastornos del Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Animales , Humanos , Masculino , Ratones , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Dieta Alta en Grasa/efectos adversos , Fibrosis , Expresión Génica , Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/genética , Lípidos , Luciferasas/metabolismo , Macrófagos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Progresión de la Enfermedad
15.
Transl Oncol ; 41: 101882, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38290247

RESUMEN

ABCC1 belongs to the ATP-binding cassette (ABC) superfamily, which encompasses a total of 48 constituent members. ABCC1 has been shown to be associated with the growth, progression, and drug resistance of various types of cancer. However, the impact of ABCC1 on cancer immune infiltration and pan-cancer prognosis has been rarely studied. Our comprehensive pan-cancer analysis unveiled elevated ABCC1 expression across various cancers. ABCC1 overexpression consistently predicted unfavorable outcomes based on TCGA data. Moreover, ABCC1 expression exhibited intricate associations with diverse immune-related genes and demonstrated a close correlation with immune scores across multiple tumor types. Analysis of scRNA-seq data from the GEO database revealed that the expression of ABCC1 in hepatocellular carcinoma (HCC) cells is significant positively correlated with macrophage infiltration. Furthermore, various in vitro and in vivo experiments substantiated the role of ABCC1 in promoting the progression of HCC, along with increased macrophage recruitment. Based on the results, we propose ABCC1 as a potentially valuable prognostic indicator and a prospective target for immune-based cancer therapies.

16.
Cancer Lett ; 585: 216674, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38280480

RESUMEN

Metastasis is the main culprit of cancer-related death and account for the poor prognosis of hepatocellular carcinoma. Although platelets have been shown to accelerate tumor cell metastasis, the exact mechanism remained to be fully understood. Here, we found that high blood platelet counts and increased tumor tissue ADAM10 expression indicated the poor prognosis of HCC patients. Meanwhile, blood platelet count has positive correlation with tumor tissue ADAM10 expression. In vitro, we revealed that platelet increased ADAM10 expression in tumor cell through TLR4/NF-κB signaling pathway. ADAM10 catalyzed the shedding of CX3CL1 which bound to CX3CR1 receptor, followed by inducing epithelial to mesenchymal transition and activating RhoA signaling in cancer cells. Moreover, knockdown HCC cell TLR4 (Tlr4) or inhibition of ADAM10 prevented platelet-increased tumor cell migration, invasion and endothelial permeability. In vivo, we further verified in mice lung metastatic model that platelet accelerated tumor metastasis via cancer cell TLR4/ADAM10/CX3CL1 axis. Overall, our study provides new insights into the underlying mechanism of platelet-induced HCC metastasis. Therefore, targeting the TLR4/ADAM10/CX3CL1 axis in cancer cells hold promise for the inhibition of platelet-promoted lung metastasis of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/patología , Receptor Toll-Like 4/metabolismo , Neoplasias Hepáticas/patología , Transición Epitelial-Mesenquimal , Transducción de Señal , Proteína ADAM10/metabolismo , Movimiento Celular , Línea Celular Tumoral , Metástasis de la Neoplasia , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Quimiocina CX3CL1
17.
Adv Sci (Weinh) ; 11(13): e2307242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38247171

RESUMEN

N6-methyladenosine (m6A) modification orchestrates cancer formation and progression by affecting the tumor microenvironment (TME). For hepatocellular carcinoma (HCC), immune evasion and angiogenesis are characteristic features of its TME. The role of YTH N6-methyladenosine RNA binding protein 2 (YTHDF2), as an m6A reader, in regulating HCC TME are not fully understood. Herein, it is discovered that trimethylated histone H3 lysine 4 and H3 lysine 27 acetylation modification in the promoter region of YTHDF2 enhanced its expression in HCC, and upregulated YTHDF2 in HCC predicted a worse prognosis. Animal experiments demonstrated that Ythdf2 depletion inhibited spontaneous HCC formation, while its overexpression promoted xenografted HCC progression. Mechanistically, YTHDF2 recognized the m6A modification in the 5'-untranslational region of ETS variant transcription factor 5 (ETV5) mRNA and recruited eukaryotic translation initiation factor 3 subunit B to facilitate its translation. Elevated ETV5 expression induced the transcription of programmed death ligand-1 and vascular endothelial growth factor A, thereby promoting HCC immune evasion and angiogenesis. Targeting YTHDF2 via small interference RNA-containing aptamer/liposomes successfully both inhibited HCC immune evasion and angiogenesis. Together, this findings reveal the potential application of YTHDF2 in HCC prognosis and targeted treatment.


Asunto(s)
Aptámeros de Nucleótidos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas de Unión al ARN , Animales , Angiogénesis , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Evasión Inmune , Neoplasias Hepáticas/genética , Lisina , Factores de Transcripción/metabolismo , Microambiente Tumoral , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ADN/metabolismo
18.
Oncogene ; 43(2): 123-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973952

RESUMEN

USP11 is a member of the ubiquitin-specific protease family and plays a crucial role in tumor progression in various cancers. However, the precise mechanism by which USP11 promotes EMT and metastasis in hepatocellular carcinoma (HCC) is not fully understood. In this study, we demonstrated that the USP11 expression was dramatically upregulated in HCC tissues and cell lines. Increased USP11 expression was closely associated with tumor number, vascular invasion, and poor prognosis. Functional experiments demonstrated that USP11 markedly promoted metastasis and EMT in HCC via induction of the transcription factor Snail. Mechanistically, USP11 interacted with and deubiquitinated eEF1A1 on Lys439, thereby inhibiting its ubiquitin-mediated degradation. Subsequently, the elevated expression of eEF1A1 resulted in its binding to SP1, which in turn drove the binding of SP1 to its target HGF gene promoter to increase its transcription. This led to an enhanced expression of HGF and the activation of the downstream PI3K/AKT signaling pathway. We demonstrated that USP11 promotes EMT and metastasis in HCC via eEF1A1/SP1/HGF dependent-EMT. Our findings suggest that the USP11/ eEF1A1/SP1/HGF axis contributes to metastasis in HCC, and therefore, could be considered as a potential therapeutic target for the treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Transición Epitelial-Mesenquimal/genética , Metástasis de la Neoplasia , Tioléster Hidrolasas/genética , Factor de Crecimiento de Hepatocito/genética , Factor de Crecimiento de Hepatocito/metabolismo
19.
Gut ; 73(6): 985-999, 2024 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-38123979

RESUMEN

OBJECTIVE: The gain of function (GOF) CTNNB1 mutations (CTNNB1 GOF ) in hepatocellular carcinoma (HCC) cause significant immune escape and resistance to anti-PD-1. Here, we aimed to investigate the mechanism of CTNNB1 GOF HCC-mediated immune escape and raise a new therapeutic strategy to enhance anti-PD-1 efficacy in HCC. DESIGN: RNA sequencing was performed to identify the key downstream genes of CTNNB1 GOF associated with immune escape. An in vitro coculture system, murine subcutaneous or orthotopic models, spontaneously tumourigenic models in conditional gene-knock-out mice and flow cytometry were used to explore the biological function of matrix metallopeptidase 9 (MMP9) in tumour progression and immune escape. Single-cell RNA sequencing and proteomics were used to gain insight into the underlying mechanisms of MMP9. RESULTS: MMP9 was significantly upregulated in CTNNB1 GOF HCC. MMP9 suppressed infiltration and cytotoxicity of CD8+ T cells, which was critical for CTNNB1 GOF to drive the suppressive tumour immune microenvironment (TIME) and anti-PD-1 resistance. Mechanistically, CTNNB1 GOF downregulated sirtuin 2 (SIRT2), resulting in promotion of ß-catenin/lysine demethylase 4D (KDM4D) complex formation that fostered the transcriptional activation of MMP9. The secretion of MMP9 from HCC mediated slingshot protein phosphatase 1 (SSH1) shedding from CD8+ T cells, leading to the inhibition of C-X-C motif chemokine receptor 3 (CXCR3)-mediated intracellular of G protein-coupled receptors signalling. Additionally, MMP9 blockade remodelled the TIME and potentiated the sensitivity of anti-PD-1 therapy in HCC. CONCLUSIONS: CTNNB1 GOF induces a suppressive TIME by activating secretion of MMP9. Targeting MMP9 reshapes TIME and potentiates anti-PD-1 efficacy in CTNNB1 GOF HCC.


Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Metaloproteinasa 9 de la Matriz , beta Catenina , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Animales , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Ratones , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Linfocitos T CD8-positivos/inmunología , Humanos , Mutación , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Escape del Tumor/genética , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral/inmunología , Línea Celular Tumoral
20.
Int Immunopharmacol ; 127: 111376, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38113691

RESUMEN

BACKGROUND AND AIMS: RNA splicing is an essential step in regulating the gene posttranscriptional expression. Serine/arginine-rich splicing factors (SRSFs) are splicing regulators with vital roles in various tumors. Nevertheless, the expression patterns and functions of SRSFs in hepatocellular carcinoma (HCC) are not fully understood. METHODS: Flow cytometry and immunofluorescent staining were used to determine the CD8+T cell infiltration. Orthotopic HCC model, lung metastasis model, DEN/CCl4 model, Srsf10△hep model, and Srsf10HepOE model were established to evaluate the role of SRSF10 in HCC and the efficacy of combination treatment. RESULTS: SRSF10 was one of the most survival-relevant genes among SRSF members and was an independent prognostic factor for HCC. SRSF10 facilitated HCC growth and metastasis by suppressing CD8+T cell infiltration. Mechanistically, SRSF10 down-regulated the p53 protein by preventing the exon 6 skipping (exon 7 in mouse) mediated degradation of MDM4 transcript, thus inhibiting CD8+T cell infiltration. Elimination of CD8+T cells or overexpression of MDM4 removed the inhibitory role of SRSF10 knockdown in HCC growth and metastasis. SRSF10 also inhibited the IFNα/γ signaling pathway and promoted the HIF1α-mediated up-regulation of PD-L1 in HCC. Hepatocyte-specific SRSF10 deficiency alleviated the DEN/CCl4-induced HCC progression and metastasis, whereas hepatocyte-specific SRSF10 overexpression deteriorated these effects. Finally, SRSF10 knockdown enhanced the anti-PD-L1-mediated anti-tumor activity. CONCLUSIONS: SRSF10 promoted HCC growth and metastasis by repressing CD8+T cell infiltration mediated by the MDM4-p53 axis. Furthermore, SRSF10 suppressed the IFNα/γ signaling pathway and induced the HIF1α signal mediated PD-L1 up-regulation. Targeting SRSF10 combined with anti-PD-L1 therapy showed promising efficacy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Antígeno B7-H1/metabolismo , Linfocitos T CD8-positivos/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Ciclo Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA