Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pept Sci ; 25(9): e3203, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31347248

RESUMEN

Plasmodium falciparum is the most lethal species of malaria. In infected human red blood cells, P. falciparum digests hemoglobin as a nutrient source, liberating cytotoxic free heme in the process. Sequestration and subsequent conversion of this byproduct into hemozoin, an inert biocrystalline heme aggregate, plays a key role in parasite survival. Hemozoin has been a longstanding target of antimalarials such as chloroquine (CQ), which inhibit the biocrystallization of free heme. In this study, we explore heme-binding interactions with histidine-rich-protein 2 (HRP2), a known malarial biomarker and purported player in free heme sequestration. HRP2 is notoriously challenging to target due to its highly repetitious sequence and irregular secondary structure. We started with three protein-catalyzed capture agents (PCCs) developed against epitopes of HRP2, inclusive of heme-binding motifs, and explored their ability to inhibit heme:HRP2 complex formation. Cocktails of the individual PCCs exhibit an inhibitory potency similar to CQ, while a covalently linked structure built from two separate PCCs provided considerably increased inhibition relative to CQ. Epitope-targeted disruption of heme:HRP2 binding is a novel approach towards disrupting P. falciparum-related hemozoin formation.


Asunto(s)
Epítopos/efectos de los fármacos , Hemo/antagonistas & inhibidores , Péptidos/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Secuencia de Aminoácidos , Antígenos de Protozoos/genética , Epítopos/genética , Hemo/genética , Humanos , Conformación Molecular , Péptidos/química , Proteínas Protozoarias/genética , Proteínas Recombinantes/genética
2.
Chem Rev ; 119(17): 9950-9970, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30838853

RESUMEN

Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.


Asunto(s)
Aptámeros de Péptidos/química , Secuencia de Aminoácidos , Animales , Aptámeros de Péptidos/síntesis química , Aptámeros de Péptidos/metabolismo , Química Clic , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Humanos , Ligandos , Biblioteca de Péptidos , Peptoides/síntesis química , Peptoides/química , Peptoides/metabolismo , Unión Proteica , Proteínas/metabolismo
3.
Anal Chem ; 90(15): 8824-8830, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29979578

RESUMEN

Protein catalyzed capture agents (PCCs) are synthetic antibody surrogates that can target a wide variety of biologically relevant proteins. As a step toward developing a high-throughput PCC pipeline, we report on the preparation of a barcoded rapid assay platform for the analysis of hits from PCC library screens. The platform is constructed by first surface patterning a micrometer scale barcode composed of orthogonal ssDNA strands onto a glass slide. The slide is then partitioned into microwells, each of which contains multiple copies of the full barcode. Biotinylated candidate PCCs from a click screen are assembled onto the barcode stripes using a complementary ssDNA-encoded cysteine-modified streptavidin library. This platform was employed to evaluate candidate PCC ligands identified from an epitope targeted in situ click screen against the two conserved allosteric switch regions of the Kirsten rat sarcoma (KRas) protein. A single microchip was utilized for the simultaneous evaluation of 15 PCC candidate fractions under more than a dozen different assay conditions. The platform also permitted more than a 10-fold savings in time and a more than 100-fold reduction in biological and chemical reagents relative to traditional multiwell plate assays. The best ligand was shown to exhibit an in vitro inhibition constant (IC50) of ∼24 µM.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , ADN de Cadena Simple/química , Inhibidores Enzimáticos/farmacología , Análisis por Micromatrices/métodos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Sitio Alostérico/efectos de los fármacos , Biotinilación , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Humanos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Estreptavidina/química
4.
Angew Chem Int Ed Engl ; 54(45): 13219-24, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26377818

RESUMEN

We describe a general synthetic strategy for developing high-affinity peptide binders against specific epitopes of challenging protein biomarkers. The epitope of interest is synthesized as a polypeptide, with a detection biotin tag and a strategically placed azide (or alkyne) presenting amino acid. This synthetic epitope (SynEp) is incubated with a library of complementary alkyne or azide presenting peptides. Library elements that bind the SynEp in the correct orientation undergo the Huisgen cycloaddition, and are covalently linked to the SynEp. Hit peptides are tested against the full-length protein to identify the best binder. We describe development of epitope-targeted linear or macrocycle peptide ligands against 12 different diagnostic or therapeutic analytes. The general epitope targeting capability for these low molecular weight synthetic ligands enables a range of therapeutic and diagnostic applications, similar to those of monoclonal antibodies.


Asunto(s)
Diseño de Fármacos , Epítopos/química , Péptidos Cíclicos/síntesis química , Péptidos Cíclicos/farmacología , Proteínas/química , Ligandos , Peso Molecular , Péptidos Cíclicos/química , Proteínas/antagonistas & inhibidores
5.
Photochem Photobiol Sci ; 12(8): 1387-400, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23625036

RESUMEN

Fluorescent analogues of the natural DNA bases are useful in the study of nucleic acids' structure and dynamics. 2-Aminopurine (2AP) is a widely used analogue with environmentally sensitive fluorescence behavior. The quantum yield of 2AP has been found to be significantly decreased when engaged in π-stacking interactions with the native bases. We present a theoretical study on fluorescence quenching mechanisms in dimers of 2AP π-stacked with adenine or guanine as in natural DNA. Relaxation pathways on the potential energy surfaces of the first excited states have been computed and reveal the importance of exciplexes and conical intersections in the fluorescence quenching process.


Asunto(s)
2-Aminopurina/química , Adenina/química , Guanina/química , Dimerización , Fluorescencia , Modelos Moleculares
7.
J Am Chem Soc ; 133(17): 6799-808, 2011 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-21486032

RESUMEN

Fluorescent analogues of nucleobases are very useful as probes to study DNA dynamics, because natural DNA does not fluoresce significantly. In many of these analogues, such as 2-aminopurine (2AP), the fluorescence is quenched when incorporated into DNA through processes that are not well understood. This work uses theoretical studies to examine fluorescence quenching pathways in 2AP-containing dimers. The singlet excited states of π-stacked dimer systems containing 2AP and a pyrimidine base, thymine or cytosine, have been studied using ab initio computational methods. Computed relaxation pathways along the excited-state surfaces reveal novel mechanisms that can lead to fluorescence quenching in the π-stacked dimers. The placement of 2AP on the 5' or 3' terminus of the dimers has different effects on the excitation energies and the relaxation pathways on the S(1) excited state. Conical intersections between the ground and first excited states exist when 2AP is placed at the 3' side, whereas the placement of 2AP at the 5' side leads to the switching of a bright state to a dark state. Both of these processes can lead to fluorescence quenching and may contribute to the fluorescence quenching observed in 2AP when incorporated in DNA.


Asunto(s)
2-Aminopurina/química , ADN/química , Pirimidinas/química , Simulación por Computador , Dimerización , Fluorescencia , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...