Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hypertension ; 79(12): 2854-2866, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36263779

RESUMEN

BACKGROUND: L-type CaV1.2 calcium channel, the primary gateway for Ca2+ influx in smooth muscles, is widely regulated by multiple posttranslational modifications, such as protein kinase-mediated phosphorylation and nitric oxide-induced S-nitrosylation. However, the effect of S-nitrosylation on CaV1.2 channel function and its role in arterial contractility are not well understood. METHODS: Electrophysiological recordings, Ca2+ and confocal imaging, and biochemical assays were used to functionally characterize S-nitrosylated CaV1.2 channels in vitro, while pressure myography and tail-cuff blood pressure measurement were conducted to evaluate the physiological effects of CaV1.2 S-nitrosylation ex vivo and in vivo. RESULTS: S-nitrosylation significantly reduced the CaV1.2 current density by promoting lysosomal degradation that leads to decreased levels of total and surface CaV1.2 channel proteins in a CaVß-independent manner and reducing the open probability of CaV1.2 channel. Mechanistically, the Cys1180 and Cys1280 residues within CaV1.2 channel have been determined as the molecular targets for S-nitrosylation as substitution of either Cys1180 or Cys1280 for serine resulted in substantial reduction of S-nitrosylation levels. Of note, CaV1.2 S-nitrosylation levels were significantly reduced in arteries isolated from both spontaneously hypertensive rats and patients with pulmonary hypertension. Moreover, mouse resistance arteries incubated with S-nitrosocysteine displayed much lower contractility and spontaneously hypertensive rats injected with S-nitrosocysteine also showed significantly reduced blood pressure, suggesting that reduced S-nitrosylation contributes to the upregulation of CaV1.2 channel activity in hypertensive arteries. CONCLUSIONS: This study provides strong evidence that S-nitrosylation-mediated downregulation of CaV1.2 channels is via 2 distinctive mechanisms and the findings offer potential pathways for therapeutic inventions in hypertension.


Asunto(s)
Hipertensión , Vasoconstricción , Ratas , Ratones , Animales , Ratas Endogámicas SHR , Óxido Nítrico/metabolismo , Músculo Liso Vascular/metabolismo , Canales de Calcio Tipo L/metabolismo , Probabilidad
2.
Open Forum Infect Dis ; 9(8): ofac379, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36004314

RESUMEN

Host factors leading to pulmonary nontuberculous mycobacteria (PNTM) disease are poorly understood compared with disseminated NTM disease, which is linked to the interleukin 12-interferon gamma signaling pathway. We investigated the tumor necrosis factor receptor associated factor 3 (TRAF3) R338W variant in a patient with recurrent PNTM infection, demonstrating TRAF3- and TNF-α-deficient phenotypes via ex vivo immune and cloning-transfection cellular studies.

3.
Proc Natl Acad Sci U S A ; 119(32): e2203883119, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35914168

RESUMEN

L-type CaV1.3 calcium channels are expressed on the dendrites and soma of neurons, and there is a paucity of information about its role in hippocampal plasticity. Here, by genetic targeting to ablate CaV1.3 RNA editing, we demonstrate that unedited CaV1.3ΔECS mice exhibited improved learning and enhanced long-term memory, supporting a functional role of RNA editing in behavior. Significantly, the editing paradox that functional recoding of CaV1.3 RNA editing sites slows Ca2+-dependent inactivation to increase Ca2+ influx but reduces channel open probability to decrease Ca2+ influx was resolved. Mechanistically, using hippocampal slice recordings, we provide evidence that unedited CaV1.3 channels permitted larger Ca2+ influx into the hippocampal pyramidal neurons to bolster neuronal excitability, synaptic transmission, late long-term potentiation, and increased dendritic arborization. Of note, RNA editing of the CaV1.3 IQ-domain was found to be evolutionarily conserved in mammals, which lends support to the importance of the functional recoding of the CaV1.3 channel in brain function.


Asunto(s)
Canales de Calcio Tipo L , Hipocampo , Plasticidad Neuronal , Edición de ARN , Animales , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Hipocampo/metabolismo , Mamíferos/metabolismo , Ratones , Plasticidad Neuronal/genética , Neuronas/metabolismo , Células Piramidales/metabolismo
4.
Pflugers Arch ; 472(6): 653-667, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32435990

RESUMEN

Voltage-gated calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alterations of calcium channel function have been implicated in multiple cardiovascular diseases, such as hypertension, atrial fibrillation, and long QT syndrome. Post-translational modifications do expand cardiovascular calcium channel structure and function to affect processes such as channel trafficking or polyubiquitination by two E3 ubiquitin ligases, Ret finger protein 2 (Rfp2) or murine double minute 2 protein (Mdm2). Additionally, biophysical property such as Ca2+-dependent inactivation (CDI) could be altered through binding of calmodulin, or channel activity could be modulated via S-nitrosylation by nitric oxide and phosphorylation by protein kinases or by interacting protein partners, such as galectin-1 and Rem. Understanding how cardiovascular calcium channel function is post-translationally remodeled under distinctive disease conditions will provide better information about calcium channel-related disease mechanisms and improve the development of more selective therapeutic agents for cardiovascular diseases.


Asunto(s)
Canales de Calcio Tipo L/genética , Sistema Cardiovascular/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Animales , Calcio/metabolismo , Enfermedades Cardiovasculares/metabolismo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Transducción de Señal/fisiología
5.
Front Neurosci ; 13: 114, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30833886

RESUMEN

Iron is a crucial cofactor for several physiological functions in the brain including transport of oxygen, DNA synthesis, mitochondrial respiration, synthesis of myelin, and neurotransmitter metabolism. If iron concentration exceeds the capacity of cellular sequestration, excessive labile iron will be harmful by generating oxidative stress that leads to cell death. In patients suffering from Parkinson disease, the total amount of iron in the substantia nigra was reported to increase with disease severity. High concentrations of iron were also found in the amyloid plaques and neurofibrillary tangles of human Alzheimer disease brains. Besides iron, nitric oxide (NO) produced in high concentration has been associated with neurodegeneration. NO is produced as a co-product when the enzyme NO synthase converts L-arginine to citrulline, and NO has a role to support normal physiological functions. When NO is produced in a high concentration under pathological conditions such as inflammation, aberrantly S-nitrosylated proteins can initiate neurodegeneration. Interestingly, NO is closely related with iron homeostasis. Firstly, it regulates iron-related gene expression through a system involving iron regulatory protein and its cognate iron responsive element (IRP-IRE). Secondly, it modified the function of iron-related protein directly via S-nitrosylation. In this review, we examine the recent advances about the potential role of dysregulated iron homeostasis in neurodegeneration, with an emphasis on AD and PD, and we discuss iron chelation as a potential therapy. This review also highlights the changes in iron homeostasis caused by NO. An understanding of these mechanisms will help us formulate strategies to reverse or ameliorate iron-related neurodegeneration in diseases such as AD and PD.

6.
J Neurosci ; 38(39): 8364-8377, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30104344

RESUMEN

Elevated iron deposition has been reported in Parkinson's disease (PD). However, the route of iron uptake leading to high deposition in the substantia nigra is unresolved. Here, we show a mechanism in enhanced Fe2+ uptake via S-nitrosylation of divalent metal transporter 1 (DMT1). While DMT1 could be S-nitrosylated by exogenous nitric oxide donors, in human PD brains, endogenously S-nitrosylated DMT1 was detected in postmortem substantia nigra. Patch-clamp electrophysiological recordings and iron uptake assays confirmed increased Mn2+ or Fe2+ uptake through S-nitrosylated DMT1. We identified two major S-nitrosylation sites, C23 and C540, by mass spectrometry, and DMT1 C23A or C540A substitutions abolished nitric oxide (NO)-mediated DMT1 current increase. To evaluate in vivo significance, lipopolysaccharide (LPS) was stereotaxically injected into the substantia nigra of female and male mice to induce inflammation and production of NO. The intranigral LPS injection resulted in corresponding increase in Fe2+ deposition, JNK activation, dopaminergic neuronal loss and deficit in motoric activity, and these were rescued by the NO synthase inhibitor l-NAME or by the DMT1-selective blocker ebselen. Lentiviral knockdown of DMT1 abolished LPS-induced dopaminergic neuron loss.SIGNIFICANCE STATEMENT Neuroinflammation and high cytoplasmic Fe2+ levels have been implicated in the initiation and progression of neurodegenerative diseases. Here, we report the unexpected enhancement of the functional activity of transmembrane divalent metal transporter 1 (DMT1) by S-nitrosylation. We demonstrated that S-nitrosylation increased DMT1-mediated Fe2+ uptake, and two cysteines were identified by mass spectrometry to be the sites for S-nitrosylation and for enhanced iron uptake. One conceptual advance is that while DMT1 activity could be increased by external acidification because the gating of the DMT1 transporter is proton motive, we discovered that DMT1 activity could also be enhanced by S-nitrosylation. Significantly, lipopolysaccharide-induced nitric oxide (NO)-mediated neuronal death in the substantia nigra could be ameliorated by using l-NAME, a NO synthase inhibitor, or by ebselen, a DMT1-selective blocker.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Neuronas Dopaminérgicas/metabolismo , Hierro/metabolismo , Locomoción , Óxido Nítrico/química , Enfermedad de Parkinson/metabolismo , Sustancia Negra/metabolismo , Animales , Proteínas de Transporte de Catión/química , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/metabolismo , Lipopolisacáridos/administración & dosificación , Masculino , Ratones Transgénicos
7.
Circulation ; 138(14): 1431-1445, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-29650545

RESUMEN

BACKGROUND: L-type CaV1.2 channels play crucial roles in the regulation of blood pressure. Galectin-1 (Gal-1) has been reported to bind to the I-II loop of CaV1.2 channels to reduce their current density. However, the mechanistic understanding for the downregulation of CaV1.2 channels by Gal-1 and whether Gal-1 plays a direct role in blood pressure regulation remain unclear. METHODS: In vitro experiments involving coimmunoprecipitation, Western blot, patch-clamp recordings, immunohistochemistry, and pressure myography were used to evaluate the molecular mechanisms by which Gal-1 downregulates CaV1.2 channel in transfected, human embryonic kidney 293 cells, smooth muscle cells, arteries from Lgasl1-/- mice, rat, and human patients. In vivo experiments involving the delivery of Tat-e9c peptide and AAV5-Gal-1 into rats were performed to investigate the effect of targeting CaV1.2-Gal-1 interaction on blood pressure monitored by tail-cuff or telemetry methods. RESULTS: Our study reveals that Gal-1 is a key regulator for proteasomal degradation of CaV1.2 channels. Gal-1 competed allosterically with the CaVß subunit for binding to the I-II loop of the CaV1.2 channel. This competitive disruption of CaVß binding led to CaV1.2 degradation by exposing the channels to polyubiquitination. It is notable that we demonstrated that the inverse relationship of reduced Gal-1 and increased CaV1.2 protein levels in arteries was associated with hypertension in hypertensive rats and patients, and Gal-1 deficiency induces higher blood pressure in mice because of the upregulated CaV1.2 protein level in arteries. To directly regulate blood pressure by targeting the CaV1.2-Gal-1 interaction, we administered Tat-e9c, a peptide that competed for binding of Gal-1 by a miniosmotic pump, and this specific disruption of CaV1.2-Gal-1 coupling increased smooth muscle CaV1.2 currents, induced larger arterial contraction, and caused hypertension in rats. In contrasting experiments, overexpression of Gal-1 in smooth muscle by a single bolus of AAV5-Gal-1 significantly reduced blood pressure in spontaneously hypertensive rats. CONCLUSIONS: We have defined molecularly that Gal-1 promotes CaV1.2 degradation by replacing CaVß and thereby exposing specific lysines for polyubiquitination and by masking I-II loop endoplasmic reticulum export signals. This mechanistic understanding provided the basis for targeting CaV1.2-Gal-1 interaction to demonstrate clearly the modulatory role that Gal-1 plays in regulating blood pressure, and offering a potential approach for therapeutic management of hypertension.


Asunto(s)
Antihipertensivos/farmacología , Presión Arterial/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Galectina 1/metabolismo , Terapia Genética/métodos , Hipertensión/terapia , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Animales , Canales de Calcio Tipo L/genética , Estudios de Casos y Controles , Dependovirus , Modelos Animales de Enfermedad , Galectina 1/genética , Vectores Genéticos , Células HEK293 , Humanos , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Potenciales de la Membrana , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Parvovirinae/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteolisis , Ratas Endogámicas SHR , Ratas Endogámicas WKY
8.
Channels (Austin) ; 12(1): 51-57, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28949795

RESUMEN

Recently, we reported that homozygous deletion of alternative exon 33 of CaV1.2 calcium channel in the mouse resulted in ventricular arrhythmias arising from increased CaV1.2Δ33 ICaL current density in the cardiomyocytes. We wondered whether heterozygous deletion of exon 33 might produce cardiac phenotype in a dose-dependent manner, and whether the expression levels of RNA splicing factors known to regulate alternative splicing of exon 33 might change in human heart failure. Unexpectedly, we found that exon 33+/- cardiomyocytes showed similar CaV1.2 channel properties as wild-type cardiomyocyte, even though CaV1.2Δ33 channels exhibit a gain-in-function. In human hearts, we found that the mRNA level of splicing factor Rbfox1, but not Rbfox2, was downregulated in dilated cardiomyopathy, and CACNA1C mRNA level was dramatically decreased in the both of dilated and ischemic cardiomyopathy. These data imply Rbfox1 may be involved in the development of cardiomyopathies via regulating the alternative splicing of CaV1.2 exon 33. (149 words).


Asunto(s)
Canales de Calcio Tipo L/genética , Exones/genética , Insuficiencia Cardíaca/genética , Factores de Empalme de ARN/genética , Animales , Canales de Calcio Tipo L/deficiencia , Canales de Calcio Tipo L/metabolismo , Insuficiencia Cardíaca/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Empalme de ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa
9.
Genes (Basel) ; 8(12)2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-29186814

RESUMEN

L-type Cav1.2 calcium channels are the major pathway for Ca2+ influx to initiate the contraction of smooth and cardiac muscles. Alteration of Cav1.2 channel function has been implicated in multiple cardiovascular diseases, such as hypertension and cardiac hypertrophy. Alternative splicing is a post-transcriptional mechanism that expands Cav1.2 channel structures to modify function, pharmacological and biophysical property such as calcium/voltage-dependent inactivation (C/VDI), or to influence its post-translational modulation by interacting proteins such as Galectin-1. Alternative splicing has generated functionally diverse Cav1.2 isoforms that can be developmentally regulated in the heart, or under pathophysiological conditions such as in heart failure. More importantly, alternative splicing of certain exons of Cav1.2 has been reported to be regulated by splicing factors such as RNA-binding Fox-1 homolog 1/2 (Rbfox 1/2), polypyrimidine tract-binding protein (PTBP1) and RNA-binding motif protein 20 (RBM20). Understanding how Cav1.2 channel function is remodelled in disease will provide better information to guide the development of more targeted approaches to discover therapeutic agents for cardiovascular diseases.

10.
Proc Natl Acad Sci U S A ; 114(21): E4288-E4295, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28490495

RESUMEN

Alternative splicing changes the CaV1.2 calcium channel electrophysiological property, but the in vivo significance of such altered channel function is lacking. Structure-function studies of heterologously expressed CaV1.2 channels could not recapitulate channel function in the native milieu of the cardiomyocyte. To address this gap in knowledge, we investigated the role of alternative exon 33 of the CaV1.2 calcium channel in heart function. Exclusion of exon 33 in CaV1.2 channels has been reported to shift the activation potential -10.4 mV to the hyperpolarized direction, and increased expression of CaV1.2Δ33 channels was observed in rat myocardial infarcted hearts. However, how a change in CaV1.2 channel electrophysiological property, due to alternative splicing, might affect cardiac function in vivo is unknown. To address these questions, we generated mCacna1c exon 33-/--null mice. These mice contained CaV1.2Δ33 channels with a gain-of-function that included conduction of larger currents that reflects a shift in voltage dependence and a modest increase in single-channel open probability. This altered channel property underscored the development of ventricular arrhythmia, which is reflected in significantly more deaths of exon 33-/- mice from ß-adrenergic stimulation. In vivo telemetric recordings also confirmed increased frequencies in premature ventricular contractions, tachycardia, and lengthened QT interval. Taken together, the significant decrease or absence of exon 33-containing CaV1.2 channels is potentially proarrhythmic in the heart. Of clinical relevance, human ischemic and dilated cardiomyopathy hearts showed increased inclusion of exon 33. However, the possible role that inclusion of exon 33 in CaV1.2 channels may play in the pathogenesis of human heart failure remains unclear.


Asunto(s)
Potenciales de Acción/genética , Canales de Calcio Tipo L/genética , Síndrome de QT Prolongado/genética , Taquicardia/genética , Complejos Prematuros Ventriculares/genética , Potenciales de Acción/fisiología , Empalme Alternativo/genética , Animales , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Células Cultivadas , Colforsina/farmacología , Fenómenos Electrofisiológicos/genética , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Isoproterenol/farmacología , Síndrome de QT Prolongado/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Nifedipino/farmacología , Ratas , Eliminación de Secuencia/genética , Taquicardia/patología , Complejos Prematuros Ventriculares/patología
11.
J Biol Chem ; 290(14): 9262-72, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25694430

RESUMEN

L-type Cav1.2 Ca(2+) channel undergoes extensive alternative splicing, generating functionally different channels. Alternatively spliced Cav1.2 Ca(2+) channels have been found to be expressed in a tissue-specific manner or under pathological conditions. To provide a more comprehensive understanding of alternative splicing in Cav1.2 channel, we systematically investigated the splicing patterns in the neonatal and adult rat hearts. The neonatal heart expresses a novel 104-bp exon 33L at the IVS3-4 linker that is generated by the use of an alternative acceptor site. Inclusion of exon 33L causes frameshift and C-terminal truncation. Whole-cell electrophysiological recordings of Cav1.233L channels expressed in HEK 293 cells did not detect any current. However, when co-expressed with wild type Cav1.2 channels, Cav1.233L channels reduced the current density and altered the electrophysiological properties of the wild type Cav1.2 channels. Interestingly, the truncated 3.5-domain Cav1.233L channels also yielded a dominant negative effect on Cav1.3 channels, but not on Cav3.2 channels, suggesting that Cavß subunits is required for Cav1.233L regulation. A biochemical study provided evidence that Cav1.233L channels enhanced protein degradation of wild type channels via the ubiquitin-proteasome system. Although the physiological significance of the Cav1.233L channels in neonatal heart is still unknown, our report demonstrates the ability of this novel truncated channel to modulate the activity of the functional Cav1.2 channels. Moreover, the human Cav1.2 channel also contains exon 33L that is developmentally regulated in heart. Unexpectedly, human exon 33L has a one-nucleotide insertion that allowed in-frame translation of a full Cav1.2 channel. An electrophysiological study showed that human Cav1.233L channel is a functional channel but conducts Ca(2+) ions at a much lower level.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/genética , Miocardio/metabolismo , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Canales de Calcio Tipo L/química , ADN , Cartilla de ADN , Exones , Masculino , Datos de Secuencia Molecular , Ratas , Ratas Wistar , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
12.
Cell ; 140(1): 88-98, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-20074522

RESUMEN

Thyrotoxic hypokalemic periodic paralysis (TPP) is characterized by acute attacks of weakness, hypokalemia, and thyrotoxicosis of various etiologies. These transient attacks resemble those of patients with familial hypokalemic periodic paralysis (hypoKPP) and resolve with treatment of the underlying hyperthyroidism. Because of the phenotypic similarity of these conditions, we hypothesized that TPP might also be a channelopathy. While sequencing candidate genes, we identified a previously unreported gene (not present in human sequence databases) that encodes an inwardly rectifying potassium (Kir) channel, Kir2.6. This channel, nearly identical to Kir2.2, is expressed in skeletal muscle and is transcriptionally regulated by thyroid hormone. Expression of Kir2.6 in mammalian cells revealed normal Kir currents in whole-cell and single-channel recordings. Kir2.6 mutations were present in up to 33% of the unrelated TPP patients in our collection. Some of these mutations clearly alter a variety of Kir2.6 properties, all altering muscle membrane excitability leading to paralysis.


Asunto(s)
Predisposición Genética a la Enfermedad , Parálisis Periódica Hipopotasémica/genética , Mutación , Canales de Potasio de Rectificación Interna/genética , Secuencia de Aminoácidos , Secuencia de Bases , Análisis Mutacional de ADN , Fenómenos Electrofisiológicos , Humanos , Parálisis Periódica Hipopotasémica/metabolismo , Datos de Secuencia Molecular , Canales de Potasio de Rectificación Interna/química , Canales de Potasio de Rectificación Interna/metabolismo , Transcripción Genética , Triyodotironina/metabolismo
13.
Mol Pharmacol ; 73(6): 1596-609, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18292205

RESUMEN

The corticotropin-releasing factor (CRF) peptides CRF and uro-cortins 1 to 3 are crucial regulators of mammalian stress and inflammatory responses, and they are also implicated in disorders such as anxiety, depression, and drug addiction. There is considerable interest in the physiological mechanisms by which CRF receptors mediate their widespread effects, and here we report that the native CRF receptor 1 (CRFR1) endogenous to the human embryonic kidney 293 cells can functionally couple to mammalian Ca(V)3.2 T-type calcium channels. Activation of CRFR1 by either CRF or urocortin (UCN) 1 reversibly inhibits Ca(V)3.2 currents (IC(50) of approximately 30 nM), but it does not affect Ca(V)3.1 or Ca(V)3.3 channels. Blockade of CRFR1 by the antagonist astressin abolished the inhibition of Ca(V)3.2 channels. The CRFR1-dependent inhibition of Ca(V)3.2 channels was independent of the activities of phospholipase C, tyrosine kinases, Ca(2+)/calmodulin-dependent protein kinase II, protein kinase C, and other kinase pathways, but it was dependent upon a cholera toxin-sensitive G protein-mediated mechanism relying upon G protein betagamma subunits (Gbetagamma). The inhibition of Ca(V)3.2 channels via the activation of CRFR1 was due to a hyperpolarized shift in their steady-state inactivation, and it was reversible upon washout of the agonists. Given that UCN affect multiple aspects of cardiac and neuronal physiology and that Ca(V)3.2 channels are widespread throughout the cardiovascular and nervous systems, the results point to a novel and functionally relevant CRFR1-Ca(V)3.2 T-type calcium channel signaling pathway.


Asunto(s)
Bloqueadores de los Canales de Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo , Receptores de Hormona Liberadora de Corticotropina/metabolismo , Animales , Canales de Calcio Tipo T/biosíntesis , Canales de Calcio Tipo T/genética , Línea Celular , Humanos , Ratones , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Ratas , Ratas Wistar , Receptores de Hormona Liberadora de Corticotropina/agonistas , Receptores de Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Urocortinas/farmacología
14.
Cardiovasc Res ; 68(2): 197-203, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16051206

RESUMEN

An estimate of up to 60% of genes are subjected to alternative splicing, and 15% of human genetic diseases are associated with mutation of the splice sites [Krawczak M, Reiss J, and Cooper DN. The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet 1992; 90: 41-54; Cooper TA, and Mattox W. The regulation of splice-site selection, and its role in human disease. Am J Hum Genet 1997; 61: 259-66; Modrek B and Lee CJ. Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss. Nat Genet 2003; 34: 177-80; Modrek B, Resch A, Grasso C, and Lee C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 2001; 29: 2850-9; Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860-921] . The molecular diversity of alternatively spliced transcripts provides templates for a myriad of protein structures that are potentially crucial to sustaining the complexity of human physiology. The extensive alternative splicing of the alpha(1)1.2-subunit of the L-type Ca(v)1.2 channel, producing splice variants with distinct electrophysiological and pharmacological properties, would impact directly on the function of the cardiovascular system. Cell-selective expression of Ca(v)1.2 channels containing a specific alternatively spliced exon increases the functional variations for specific cellular activities in response to changing physiological signals. However, the regulation or control of the alpha(1)1.2-subunit alternative splicing machinery is unknown, and the role of numerous splice variants expressed in a cell is a mystery. A systematic and concerted effort is required to determine all the possible combinations of alternatively spliced exons in alpha(1)1.2-subunits in smooth and cardiac muscles. This will provide useful information to monitor changes on the usage of the entire suite of alternatively spliced exons to help relate altered Ca(v)1.2 channel function to physiology and disease.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/genética , Enfermedades Cardiovasculares/genética , Músculo Liso/metabolismo , Miocardio/metabolismo , Animales , Enfermedades Cardiovasculares/metabolismo , Humanos , Mutación
15.
J Biol Chem ; 279(48): 50329-35, 2004 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-15381693

RESUMEN

Voltage-gated calcium channels play a major role in many important processes including muscle contraction, neurotransmission, excitation-transcription coupling, and hormone secretion. To date, 10 calcium channel alpha(1)-subunits have been reported, of which four code for L-type calcium channels. In our previous work, we uncovered by transcript-scanning the presence of 19 alternatively spliced exons in the L-type Ca(v)1.2 alpha(1)-subunit. Here, we report the smooth muscle-selective expression of alternatively spliced exon 9(*) in Ca(v)1.2 channels found on arterial smooth muscle. Specific polyclonal antibody against exon 9(*) localized the intense expression of 9(*)-containing Ca(v)1.2 channels on the smooth muscle wall of arteries, but the expression on cardiac muscle was low. Whole-cell patch clamp recordings of the 9(*)-containing Ca(v)1.2 channels in HEK293 cells demonstrated -9 and -11-mV hyperpolarized shift in voltage-dependent activation and current-voltage relationships, respectively. The steady-state inactivation property and sensitivity to blockade by nifedipine of the +/-exon 9(*) splice variants were, however, not significantly different. Such cell-selective expression of an alternatively spliced exon strongly indicates the customization and fine tuning of calcium channel functions through alternative splicing of the pore-forming alpha(1)-subunit. The generation of proteomic variations by alternative splicing of the calcium channel Ca(v)1.2 alpha(1)-subunit can potentially provide a flexible mechanism for muscle or neuronal cells to respond to various physiological signals or to diseases.


Asunto(s)
Empalme Alternativo , Canales de Calcio Tipo L/genética , Músculo Liso/metabolismo , Secuencia de Aminoácidos , Anticuerpos , Western Blotting , Canales de Calcio Tipo L/biosíntesis , Canales de Calcio Tipo L/inmunología , Canales de Calcio Tipo L/metabolismo , Electrofisiología , Exones , Humanos , Inmunohistoquímica , Datos de Secuencia Molecular
16.
J Biol Chem ; 279(43): 44335-43, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15299022

RESUMEN

The L-type (Cav1.2) voltage-gated calcium channels play critical roles in membrane excitability, gene expression, and muscle contraction. The generation of splice variants by the alternative splicing of the poreforming Cav1.2 alpha1-subunit (alpha(1)1.2) may thereby provide potent means to enrich functional diversity. To date, however, no comprehensive scan of alpha(1)1.2 splice variation has been performed, particularly in the human context. Here we have undertaken such a screen, exploiting recently developed "transcript scanning" methods to probe the human gene. The degree of variation turns out to be surprisingly large; 19 of the 55 exons comprising the human alpha(1)1.2 gene were subjected to alternative splicing. Two of these are previously unrecognized exons and two others were not known to be spliced. Comparisons of fetal and adult heart and brain uncovered a large IVS3-S4 variability resulting from combinatorial utilization of exons 31-33. Electrophysiological characterization of such IVS3-S4 variation revealed unmistakable shifts in the voltage dependence of activation, according to an interesting correlation between increased IVS3-S4 linker length and activation at more depolarized potentials. Steady-state inactivation profiles remained unaltered. This systematic portrait of splice variation furnishes a reference library for comprehending combinatorial arrangements of Cav1.2 splice exons, especially as they impact development, physiology, and disease.


Asunto(s)
Canales de Calcio Tipo L/biosíntesis , Canales de Calcio Tipo L/genética , ARN Mensajero/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Bario/química , Encéfalo/metabolismo , Línea Celular , Cartilla de ADN/química , ADN Complementario/metabolismo , Electrofisiología , Exones , Variación Genética , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Miocardio/metabolismo , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa , Conformación Proteica , Estructura Terciaria de Proteína , Empalme del ARN , Distribución Tisular
17.
J Neurosci ; 22(23): 10142-52, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12451115

RESUMEN

P/Q-type (Ca(v)2.1) calcium channels support a host of Ca2+-driven neuronal functions in the mammalian brain. Alternative splicing of the main alpha1A (alpha1(2.1)) subunit of these channels may thereby represent a rich strategy for tuning the functional profile of diverse neurobiological processes. Here, we applied a recently developed "transcript-scanning" method for systematic determination of splice variant transcripts of the human alpha1(2.1) gene. This screen identified seven loci of variation, which together have never been fully defined in humans. Genomic sequence analysis clarified the splicing mechanisms underlying the observed variation. Electrophysiological characterization and a novel analytical paradigm, termed strength-current analysis, revealed that one focus of variation, involving combinatorial inclusion and exclusion of exons 43 and 44, exerted a primary effect on current amplitude and a corollary effect on Ca2+-dependent channel inactivation. These findings significantly expand the anticipated scope of functional diversity produced by splice variation of P/Q-type channels.


Asunto(s)
Empalme Alternativo/genética , Canales de Calcio Tipo N/genética , Secuencia de Aminoácidos , Encéfalo/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo N/metabolismo , Calmodulina/metabolismo , Línea Celular , Clonación Molecular , Bases de Datos de Ácidos Nucleicos , Exones , Humanos , Intrones , Riñón/citología , Riñón/metabolismo , Datos de Secuencia Molecular , Técnicas de Placa-Clamp , Reacción en Cadena de la Polimerasa/métodos , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Análisis de Secuencia de ADN , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...