Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(1): 1034-1044, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34935337

RESUMEN

Solar interfacial evaporation is an emerging technology in solar energy harvesting developed to remedy the global energy crisis and the lack of freshwater resources. However, developing fully enhanced thermal management to optimize solar-heat utilization efficiency and form remains a great challenge. We created a synergistic photothermal layer from a poly(N-phenylglycine) (PNPG)/MoS2 nanohybrid via electrostatic-induced self-assembly for a broad-spectrum and efficient solar absorption. The PNPG/MoS2 system provided effective synergistic photothermal conversion and good water transmission, enabling rapid solar steam escape. Notably, synergistic coupling of solar evaporation-thermoelectric (TE) power generation was also achieved, providing more efficient exploitation of solar heat. The system demonstrated a solar evaporation rate of up to 1.70 kg m-2 h-1 and achieved a maximum thermoelectric output power with 0.23 W m-2 under one sun. The high-performance PNPG/MoS2 synergistic photothermal system developed in this study offers potential opportunities for coupling solar water purification with thermoelectric power generation to meet the needs of resource-scarce areas.

2.
ACS Appl Mater Interfaces ; 8(27): 17659-67, 2016 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-27286474

RESUMEN

Conventional superhydrophobic surfaces have always depended on expensive, sophisticated, and fragile roughness structures. Therefore, poor robustness has turned into the bottleneck for large-scale industrial applications of the superhydrophobic surfaces. To handle this problem, a superhydrophobic surface with firm robustness urgently needs to be developed. In this work, we created a versatile strategy to fabricate robust, self-cleaning, and superhydrophobic surfaces for both soft and hard substrates. We created an ethanol based suspension of perfluorooctyltriethoxysilane-mdodified calcium carbonate nanoparticles which can be sprayed onto both hard and soft substrates to form superhydrophobic surfaces. For all kinds of substrates, spray adhesive was directly coated onto abluent substrate surfaces to promote the robustness. These superhydrophobic surfaces showed remarkable robustness against knife scratch and sandpaper abrasion, while retaining its superhydrophobicity even after 30 abrasion cycles with sandpaper. What is more, the superhydrophobic surfaces have shown promising potential applications in self-cleaning and oil-water separation. The surfaces retained their self-cleaning property even immersed in oil. In addition to oil-water separation, the water contents in oil after separation of various mixtures were all below 150 ppm, and for toluene even as low as 55 ppm. Furthermore, the as-prepared device for oil-water separation could be cycled 6 times and still retained excellent oil-water separation efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...