Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38928450

RESUMEN

Abnormal cell proliferation and growth leading to cancer primarily result from cumulative genome mutations. Single gene mutations alone do not fully explain cancer onset and progression; instead, clustered mutations-simultaneous occurrences of multiple mutations-are considered to be pivotal in cancer development and advancement. These mutations can affect different genes and pathways, resulting in cells undergoing malignant transformation with multiple functional abnormalities. Clustered mutations influence cancer growth rates, metastatic potential, and drug treatment sensitivity. This summary highlights the various types and characteristics of clustered mutations to understand their associations with carcinogenesis and discusses their potential clinical significance in cancer. As a unique mutation type, clustered mutations may involve genomic instability, DNA repair mechanism defects, and environmental exposures, potentially correlating with responsiveness to immunotherapy. Understanding the characteristics and underlying processes of clustered mutations enhances our comprehension of carcinogenesis and cancer progression, providing new diagnostic and therapeutic approaches for cancer.


Asunto(s)
Carcinogénesis , Mutación , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patología , Carcinogénesis/genética , Inestabilidad Genómica , Transformación Celular Neoplásica/genética , Reparación del ADN/genética , Animales
2.
Comput Struct Biotechnol J ; 23: 1833-1843, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38707540

RESUMEN

Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.

4.
BMC Genomics ; 25(1): 255, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448893

RESUMEN

BACKGROUND: Drug addiction is a serious problem worldwide and is influenced by genetic factors. The present study aimed to investigate the association between genetics and drug addiction among Han Chinese. METHODS: A total of 1000 Chinese users of illicit drugs and 9693 healthy controls were enrolled and underwent single nucleotide polymorphism (SNP)-based and haplotype-based association analyses via whole-genome genotyping. RESULTS: Both single-SNP and haplotype tests revealed associations between illicit drug use and several immune-related genes in the major histocompatibility complex (MHC) region (SNP association: log10BF = 15.135, p = 1.054e-18; haplotype association: log10BF = 20.925, p = 2.065e-24). These genes may affect the risk of drug addiction via modulation of the neuroimmune system. The single-SNP test exclusively reported genome-wide significant associations between rs3782886 (SNP association: log10BF = 8.726, p = 4.842e-11) in BRAP and rs671 (SNP association: log10BF = 7.406, p = 9.333e-10) in ALDH2 and drug addiction. The haplotype test exclusively reported a genome-wide significant association (haplotype association: log10BF = 7.607, p = 3.342e-11) between a region with allelic heterogeneity on chromosome 22 and drug addiction, which may be involved in the pathway of vitamin B12 transport and metabolism, indicating a causal link between lower vitamin B12 levels and methamphetamine addiction. CONCLUSIONS: These findings provide new insights into risk-modeling and the prevention and treatment of methamphetamine and heroin dependence, which may further contribute to potential novel therapeutic approaches.


Asunto(s)
Metanfetamina , Trastornos Relacionados con Sustancias , Humanos , Estudio de Asociación del Genoma Completo , Haplotipos , Polimorfismo de Nucleótido Simple , Trastornos Relacionados con Sustancias/genética , Vitamina B 12 , China , Aldehído Deshidrogenasa Mitocondrial
5.
Comput Biol Med ; 170: 108066, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38310806

RESUMEN

Synthetic lethality (SL) occurs when the inactivation of two genes results in cell death while the inactivation of either gene alone is non-lethal. SL-based therapy has become a promising anti-cancer treatment option with the increasing researches and applications in clinical practice, while the specific therapeutic opportunities for various cancers have not yet been comprehensively investigated. Herein, we described a computational approach based on machine learning and statistical inference to discover the cancer-specific synthetic lethal interactions. First, Random Forest and One-Class SVM were used to perform cancer unbiased prediction of synthetic lethality. Then, two strategies, including mutual exclusivity and differential expression, were used to screen cancer-specific synthetic lethal interactions, resulting in 14,582 SL gene pairs in 33 cancer types. Finally, we developed a freely available database of CSSLdb (Cancer Specific Synthetic Lethality Database, http://www.tmliang.cn/CSSL/) to present cancer-specific synthetic lethal genetic interactions, which would enrich the relevant research and contribute to underlying therapy strategies based on synthetic lethality.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Genes Letales , Bases de Datos Factuales , Aprendizaje Automático
6.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338839

RESUMEN

Autophagy, a complex and highly regulated cellular process, is critical for the maintenance of cellular homeostasis by lysosomal degradation of cellular debris, intracellular pathogens, and dysfunctional organelles. It has become an interesting and attractive topic in cancer because of its dual role as a tumor suppressor and cell survival mechanism. As a highly conserved pathway, autophagy is strictly regulated by diverse non-coding RNAs (ncRNAs), ranging from short and flexible miRNAs to lncRNAs and even circRNAs, which largely contribute to autophagy regulatory networks via complex RNA interactions. The potential roles of RNA interactions during autophagy, especially in cancer procession and further anticancer treatment, will aid our understanding of related RNAs in autophagy in tumorigenesis and cancer treatment. Herein, we mainly summarized autophagy-related mRNAs and ncRNAs, also providing RNA-RNA interactions and their potential roles in cancer prognosis, which may deepen our understanding of the relationships between various RNAs during autophagy and provide new insights into autophagy-related therapeutic strategies in personalized medicine.


Asunto(s)
MicroARNs , Neoplasias , ARN Largo no Codificante , Humanos , ARN no Traducido/genética , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , ARN Mensajero/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Autofagia/genética
8.
Pharmaceutics ; 15(10)2023 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-37896193

RESUMEN

Cancer is the second leading cause of death in the world, and chemotherapy is one of the main methods of cancer treatment. However, the resistance of cancer cells to chemotherapeutic drugs has always been the main reason affecting the therapeutic effect. Synthetic lethality has emerged as a promising approach to augment the sensitivity of cancer cells to chemotherapy agents. Synthetic lethality (SL) refers to the specific cell death resulting from the simultaneous mutation of two non-lethal genes, which individually allow cell survival. This comprehensive review explores the classification of SL, screening methods, and research advancements in SL inhibitors, including Poly (ADP-ribose) polymerase (PARP) inhibitors, Ataxia telangiectasia and Rad3-related (ATR) inhibitors, WEE1 G2 checkpoint kinase (WEE1) inhibitors, and protein arginine methyltransferase 5 (PRMT5) inhibitors. Emphasizing their combined use with chemotherapy drugs, we aim to unveil more effective treatment strategies for cancer patients.

9.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-37762212

RESUMEN

Dysregulated expression of specific non-coding RNAs (ncRNAs) has been strongly linked to tumorigenesis, cancer progression, and therapeutic resistance. These ncRNAs can act as either oncogenes or tumor suppressors, thereby serving as valuable diagnostic and prognostic markers. Numerous studies have implicated the participation of ncRNAs in the regulation of diverse signaling pathways, including the pivotal Wnt/ß-catenin signaling pathway that is widely acknowledged for its pivotal role in embryogenesis, cellular proliferation, and tumor biology control. Recent emerging evidence has shed light on the capacity of ncRNAs to interact with key components of the Wnt/ß-catenin signaling pathway, thereby modulating the expression of Wnt target genes in cancer cells. Notably, the activity of this pathway can reciprocally influence the expression levels of ncRNAs. However, comprehensive analysis investigating the specific ncRNAs associated with the Wnt/ß-catenin signaling pathway and their intricate interactions in cancer remains elusive. Based on these noteworthy findings, this review aims to unravel the intricate associations between ncRNAs and the Wnt/ß-catenin signaling pathway during cancer initiation, progression, and their potential implications for therapeutic interventions. Additionally, we provide a comprehensive overview of the characteristics of ncRNAs and the Wnt/ß-catenin signaling pathway, accompanied by a thorough discussion of their functional roles in tumor biology. Targeting ncRNAs and molecules associated with the Wnt/ß-catenin signaling pathway may emerge as a promising and effective therapeutic strategy in future cancer treatments.

11.
Mol Genet Genomics ; 298(3): 521-535, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36813858

RESUMEN

MicroRNAs (miRNAs), important regulators of gene expression, play critical roles in various biological processes and tumorigenesis. To reveal the potential relationships between multiple isomiRs and arm switching, we performed a comprehensive pan-cancer analysis to discuss their roles in tumorigenesis and cancer prognosis. Our results showed that many miR-#-5p and miR-#-3p pairs from the two arms of pre-miRNA may have abundant expression levels, and they are often involved in distinct functional regulatory networks by targeting different mRNAs, although they may also interact with common targets. The two arms may show diverse isomiR expression landscapes, and their expression ratio might vary, mainly depending on tissue type. Dominantly expressed isomiRs can be used to determine distinct cancer subtypes that are associated with clinical outcome, indicating that they may be potential prognostic biomarkers. Our findings indicate robust and flexible isomiR expression landscapes that will enrich the study of miRNAs/isomiRs and aid in revealing the potential roles of multiple isomiRs yielded by arm switching in tumorigenesis.


Asunto(s)
MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética , Carcinogénesis/genética
12.
BMC Bioinformatics ; 24(1): 12, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624399

RESUMEN

Gallbladder carcinoma (GBC), an aggressive malignant tumor of the biliary system, is characterized by high cellular heterogeneity and poor prognosis. Fewer data have been reported in GBC than other common cancer types. Multi-omics data will contribute to the understanding of the molecular mechanisms of cancer, cancer diagnosis and prognosis. Herein, to provide better understanding of the molecular events in GBC pathogenesis, we developed GBCdb ( http://tmliang.cn/gbc/ ), a user-friendly interface for the query and browsing of GBC-associated genes and RNA interaction networks using published multi-omics data, which also included experimentally supported data from different molecular levels. GBCdb will help to elucidate the potential biological roles of different RNAs and allow for the exploration of RNA interactions in GBC. These resources will provide an opportunity for unraveling the potential molecular features of Gallbladder carcinoma.


Asunto(s)
Neoplasias de la Vesícula Biliar , ARN Largo no Codificante , Humanos , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/metabolismo , Neoplasias de la Vesícula Biliar/patología , ARN Mensajero/genética , ARN no Traducido/genética , Línea Celular Tumoral , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica
13.
FEBS J ; 290(6): 1531-1548, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36181326

RESUMEN

The concept of synthetic lethality has great potential for anticancer therapy as a new strategy to specifically kill cancer cells while sparing normal cells. To further understand the potential molecular interactions and gene characteristics involved in synthetic lethality, we performed a comprehensive analysis of predicted cancer-specific genetic interactions. Many genes were identified as cancer-associated genes that contributed to multiple biological processes and pathways, and the gene features were not random, indicating their potential roles in human carcinogenesis. Some relevant genes detected in multiple cancers were prone to be enriched in specific biological progresses and pathways, especially processes associated with DNA damage, chromosome-related functions and cancer pathways. These findings strongly implicated potential roles for these genes in cancer pathophysiology and functional relationships, as well as applications for future anticancer drug discovery. Further experimental validation indicated that the synthetic lethal interaction of APC and GFER may provide a potential anticancer strategy for patients with APC-mutant colon cancer. These results will contribute to further exploration of synthetic lethal interactions and broader application of the concept of synthetic lethality in anticancer therapeutics.


Asunto(s)
Antineoplásicos , Genes Letales , Neoplasias , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinogénesis/genética , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Daño del ADN , Genes Letales/genética , Genes Letales/fisiología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Oncogenes
14.
Acta Biochim Biophys Sin (Shanghai) ; 54(9): 1278-1288, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-36082932

RESUMEN

Obesity has now surpassed malnutrition and infectious diseases as the most significant contributor to health problems worldwide. In particular, obesity is associated with several metabolic disorders, including hyperlipidemia, hepatic steatosis, and subfertility. Genipin (GNP), the aglycone of geniposide, is isolated from the extract of the traditional Chinese medicine Gardenia jasminoides Ellis and has been used in traditional oriental medicine against several inflammation-driven diseases. However, the effect and molecular mechanism of GNP on obesity-associated dyslipidemia and sperm dysfunction still need to be explored. In this study, we detect the effects of GNP on hyperlipidemia, hepatic lipid accumulation and sperm function using a high-fat diet (HFD)-induced obese mouse model. We find that obese mice treated with GNP show an improvement in body weight, serum triglyceride levels, serum hormone levels, serum inflammatory cytokines, hepatic steatosis and sperm function. At the molecular level, HFD/GNP diversely regulates the expression of miR-132 in a tissue-specific manner. miR-132 further targets and regulates the expression of SREBP-1c in liver cells, as well as the expressions of SREBP-1c and StAR in Leydig cells in the testis, thus modifying lipogenesis and steroidogenesis, respectively. Collectively, our data demonstrate that GNP shows a broad effect on the improvement of HFD-induced metabolic disorder and sperm dysfunction in male mice by tissue-specific regulation of miR-132. Our findings reveal the function GNP in ameliorating hepatic lipid metabolism and sperm function and suggest that this compound is a versatile drug to treat metabolic disorders.


Asunto(s)
Hígado Graso , Hiperlipidemias , Enfermedades Metabólicas , MicroARNs , Masculino , Animales , Ratones , Metabolismo de los Lípidos , Ratones Obesos , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Semen/metabolismo , Hígado/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hiperlipidemias/metabolismo , Dieta Alta en Grasa/efectos adversos , Enfermedades Metabólicas/metabolismo , MicroARNs/metabolismo , Espermatozoides/metabolismo , Ratones Endogámicos C57BL
15.
Database (Oxford) ; 20222022 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-36029479

RESUMEN

Synthetic lethality has been widely concerned because of its potential role in cancer treatment, which can be harnessed to selectively kill cancer cells via identifying inactive genes in a specific cancer type and further targeting the corresponding synthetic lethal partners. Herein, to obtain cancer-specific synthetic lethal interactions, we aimed to predict genetic interactions via a pan-cancer analysis from multiple molecular levels using random forest and then develop a user-friendly database. First, based on collected public gene pairs with synthetic lethal interactions, candidate gene pairs were analyzed via integrating multi-omics data, mainly including DNA mutation, copy number variation, methylation and mRNA expression data. Then, integrated features were used to predict cancer-specific synthetic lethal interactions using random forest. Finally, SLOAD (http://www.tmliang.cn/SLOAD) was constructed via integrating these findings, which was a user-friendly database for data searching, browsing, downloading and analyzing. These results can provide candidate cancer-specific synthetic lethal interactions, which will contribute to drug designing in cancer treatment that can promote therapy strategies based on the principle of synthetic lethality. Database URL http://www.tmliang.cn/SLOAD/.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neoplasias , Bases de Datos Factuales , Epistasis Genética , Humanos , Mutación
16.
Comput Struct Biotechnol J ; 20: 3972-3985, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35950189

RESUMEN

The Notch signaling has an important role in multiple cellular processes and is related to carcinogenic process. To understand the potential molecular features of the crucial Notch pathway, a comprehensive multi-omics analysis is performed to explore its contributions in cancer, mainly including analysis of somatic mutation landscape, pan-cancer expression, ncRNA regulation and potential prognostic power. The screened 22 Notch core genes are relative stable in DNA variation. Dynamic expression patterns are associated with the Notch activity, which are mainly regulated by multiple ncRNAs via interactions of ncRNA:mRNA and ceRNA networks. The Notch pathway shows a potential prognostic ability through integrating multi-omics features as well as their targets, and it is correlated with immune infiltration and maybe available drug targets, implying the potential role in individualized treatment. Collectively, all of these findings contribute to exploring crucial role of the key pathway in cancer pathophysiology and gaining mechanistic insights into cross-talks among RNAs and biological pathways, which indicates the possible application of the well-conserved Notch signaling pathway in precision medicine.

17.
Comput Struct Biotechnol J ; 20: 3839-3850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891787

RESUMEN

As one of common malignancies, prostate adenocarcinoma (PRAD) has been a growing health problem and a leading cause of cancer-related death. To obtain expression and functional relevant RNAs, we firstly screened candidate hub mRNAs and characterized their associations with cancer. Eight deregulated genes were identified and used to build a risk model (AUC was 0.972 at 10 years) that may be a specific biomarker for cancer prognosis. Then, relevant miRNAs and lncRNAs were screened, and the constructed primarily interaction networks showed the potential cross-talks among diverse RNAs. IsomiR landscapes were surveyed to understand the detailed isomiRs in relevant homologous miRNA loci, which largely enriched RNA interaction network due to diversities of sequence and expression. We finally characterized TK1, miR-222-3p and SNHG3 as crucial RNAs, and the abnormal expression patterns of them were correlated with poor survival outcomes. TK1 was found synthetic lethal interactions with other genes, implicating potential therapeutic target in precision medicine. LncRNA SNHG3 can sponge miR-222-3p to perturb RNA regulatory network and TK1 expression. These results demonstrate that TK1:miR-222-3p:SNHG3 axis may be a potential prognostic biomarker, which will contribute to further understanding cancer pathophysiology and providing potential therapeutic targets in precision medicine.

18.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35806027

RESUMEN

Circular RNAs (circRNAs), a class of new endogenous non-coding RNAs (ncRNAs), are closely related to the carcinogenic process and play a critical role in tumor metastasis. CircRNAs can lay the foundation for tumor metastasis via promoting tumor angiogenesis, make tumor cells gain the ability of migration and invasion by regulating epithelial-mesenchymal transition (EMT), interact with immune cells, cytokines, chemokines, and other non-cellular components in the tumor microenvironment, damage the normal immune function or escape the immunosuppressive network, and further promote cell survival and metastasis. Herein, based on the characteristics and biological functions of circRNA, we elaborated on the effect of circRNA via circRNA-associated competing endogenous RNA (ceRNA) network by acting as miRNA/isomiR sponges on tumor angiogenesis, cancer cell migration and invasion, and interaction with the tumor microenvironment (TME), then explored the potential interactions across different RNAs, and finally discussed the potential clinical value and application as a promising biomarker. These results provide a theoretical basis for the further application of metastasis-related circRNAs in cancer treatment. In summary, we briefly summarize the diverse roles of a circRNA-associated ceRNA network in cancer metastasis and the potential clinical application, especially the interaction of circRNA and miRNA/isomiR, which may complicate the RNA regulatory network and which will contribute to a novel insight into circRNA in the future.


Asunto(s)
MicroARNs , ARN Circular , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , Neovascularización Patológica , ARN/genética , ARN Circular/genética
19.
Genes (Basel) ; 13(6)2022 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-35741849

RESUMEN

Prostate adenocarcinoma (PRAD), also named prostate cancer, the most common visceral malignancy, is diagnosed in male individuals. Herein, in order to obtain immune-based subtypes, we performed an integrative analysis to characterize molecular subtypes based on immune-related genes, and further discuss the potential features and differences between identified subtypes. Simultaneously, we also construct an immune-based risk model to assess cancer prognosis. Our findings showed that the two subtypes, C1 and C2, could be characterized, and the two subtypes showed different characteristics that could clearly describe the heterogeneity of immune microenvironments. The C2 subtype presented a better survival rate than that in the C1 subtype. Further, we constructed an immune-based prognostic model based on four screened abnormally expressed genes, and they were selected as predictors of the robust prognostic model (AUC = 0.968). Our studies provide reference for characterization of molecular subtypes and immunotherapeutic agents against prostate cancer, and the developed robust and useful immune-based prognostic model can contribute to cancer prognosis and provide reference for the individualized treatment plan and health resource utilization. These findings further promote the development and application of precision medicine in prostate cancer.


Asunto(s)
Adenocarcinoma , Neoplasias de la Próstata , Adenocarcinoma/genética , Humanos , Masculino , Medicina de Precisión , Pronóstico , Próstata , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Microambiente Tumoral/genética
20.
Comput Struct Biotechnol J ; 19: 5722-5734, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34745457

RESUMEN

Cholangiocarcinomas (CCAs) are tumors that arise from the cholangiocytes. Although some genes have been shown with important roles in pathological process, interactions or cross-talks among different RNAs are important to understand the detailed molecular mechanisms in cancer development, especially discussing cross-talks among isomiRs and other RNAs. Herein, to characterize crucial genes in CCA, the protein expression profile was performed to survey potential crucial mRNAs and related non-coding RNAs (ncRNAs) in mRNA-ncRNA network, mainly including miRNAs/isomiRs and lncRNAs. Deregulated mRNAs were firstly obtained if consistent expression patterns were found at protein and mRNA levels, and related miRNAs/isomiRs were screened according to regulatory relationships. Diverse isomiRs from a given miRNA locus also contributed to interactions between the small RNAs and target mRNAs, and miRNAs were further used to survey related lncRNAs to expand the interactions. Thus, several groups of RNAs were constructed as candidate competitive endogenous RNA (ceRNA) networks. Finally, we found that RAB11FIP1:miR-101-3p:MIR3142HG may be a potential ceRNA network, and the interactions among them may be more complex due to variety of isomiRs. Simultaneously, RAB11FIP1 and miR-194-5p were also detected other related lncRNAs (FBXL19-AS1, SNHG1 and PVT1) that may be crucial in coding-non-coding RNA regulatory network. Our results show that diverse isomiRs with sequence and expression heterogeneities contribute to ceRNA regulatory network that may have crucial roles in CCA, which will expand our understanding of interactions among diverse RNAs and their contributions in cancer development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...