Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Neurobiol Dis ; 201: 106695, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39370051

RESUMEN

BACKGROUND: Spontaneous intracerebral hemorrhage (ICH) is associated with alarmingly high rates of disability and mortality, and current therapeutic options are suboptimal. A critical component of ICH pathology is the initiation of a robust inflammatory response, often termed "cytokine storm," which amplifies the secondary brain injury following the initial hemorrhagic insult. The precise sources and consequences of this cytokine-driven inflammation are not fully elucidated, necessitating further investigation. METHODS: To address this knowledge gap, our study conducted a comprehensive cytokine profiling using Luminex® assays, assessing 23 key cytokines. We then employed single-cell RNA sequencing and spatial transcriptomics at three critical time points post-ICH: the hyperacute, acute, and subacute phases. Integrating these multimodal analyses allowed us to identify the cellular origins of cytokines and elucidate their mechanisms of action. RESULTS: Luminex® cytokine assays revealed a significant upregulation of IL-6 and IL-1ß levels at the 24-h post-ICH time point. Through the integration of scRNA-seq and spatial transcriptomics in the hemorrhagic hemisphere of rats, we observed a pronounced activation of cytokine-related signaling pathways within the choroid plexus. Initially, immune cell presence was sparse, but it surged 24 h post-ICH, particularly in the choroid plexus, indicating a substantial shift in the immune microenvironment. We traced the source of IL-1ß and IL-6 to endothelial cells, establishing a link to pyroptosis. Endothelial pyroptosis post-ICH induced the production of IL-1ß and IL-6, which activated microglial polarization characterized by elevated expression of Msr1, Lcn2, and Spp1 via the NF-κB pathway in the choroid plexus. Furthermore, we identified neuronal populations undergoing apoptosis, mediated by the Lcn2-SLC22A17 pathway in response to IL-1ß and IL-6 signaling. Notably, the inhibition of pyroptosis using VX-765 significantly mitigated neurological impairments. CONCLUSIONS: Our study provides evidence that endothelial pyroptosis, characterized by the release of IL-1ß and IL-6, triggers microglial polarization through NF-κB pathway activation, ultimately leading to microglia-mediated neuronal apoptosis in the choroid plexus post-ICH. These findings suggest that targeted therapeutic strategies aimed at mitigating endothelial cell pyroptosis and neutralizing inflammatory cytokines may offer neuroprotection for both microglia and neurons, presenting a promising avenue for ICH treatment.

2.
Res Sq ; 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149481

RESUMEN

Cross-individual variability is considered the essence of biology, preventing precise mathematical descriptions of biological motion1-7 like the physics law of motion. Here we report that the cerebellum shapes motor kinematics by encoding dynamic motor frequencies with remarkable numerical precision and cross-individual uniformity. Using in-vivo electrophysiology and optogenetics in mice, we confirmed that deep cerebellar neurons encoded frequencies via populational tuning of neuronal firing probabilities, creating cerebellar oscillations and motions with matched frequencies. The mechanism was consistently presented in self-generated rhythmic and non-rhythmic motions triggered by a vibrational platform, or skilled tongue movements of licking in all tested mice with cross-individual uniformity. The precision and uniformity allowed us to engineer complex motor kinematics with designed frequencies. We further validated the frequency-coding function of the human cerebellum using cerebellar electroencephalography recordings and alternating-current stimulation during voluntary tapping tasks. Our findings reveal a cerebellar algorithm for motor kinematics with precision and uniformity, the mathematical foundation for brain-computer interface for motor control.

3.
J Imaging Inform Med ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164454

RESUMEN

In clinical practice, the anatomical classification of pulmonary veins plays a crucial role in the preoperative assessment of atrial fibrillation radiofrequency ablation surgery. Accurate classification of pulmonary vein anatomy assists physicians in selecting appropriate mapping electrodes and avoids causing pulmonary arterial hypertension. Due to the diverse and subtly different anatomical classifications of pulmonary veins, as well as the imbalance in data distribution, deep learning models often exhibit poor expression capability in extracting deep features, leading to misjudgments and affecting classification accuracy. Therefore, in order to solve the problem of unbalanced classification of left atrial pulmonary veins, this paper proposes a network integrating multi-scale feature-enhanced attention and dual-feature extraction classifiers, called DECNet. The multi-scale feature-enhanced attention utilizes multi-scale information to guide the reinforcement of deep features, generating channel weights and spatial weights to enhance the expression capability of deep features. The dual-feature extraction classifier assigns a fixed number of channels to each category, equally evaluating all categories, thus alleviating the learning bias and overfitting caused by data imbalance. By combining the two, the expression capability of deep features is strengthened, achieving accurate classification of left atrial pulmonary vein morphology and providing support for subsequent clinical treatment. The proposed method is evaluated on datasets provided by the People's Hospital of Liaoning Province and the publicly available DermaMNIST dataset, achieving average accuracies of 78.81% and 83.44%, respectively, demonstrating the effectiveness of the proposed approach.

4.
Cancer Med ; 13(13): e7369, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38970209

RESUMEN

BACKGROUND: The diagnosis of glioma has advanced since the release of the WHO 2021 classification with more molecular alterations involved in the integrated diagnostic pathways. Our study aimed to present our experience with the clinical features and management of astrocytoma, IDH mutant based on the latest WHO classification. METHODS: Patients diagnosed with astrocytoma, IDH-mutant based on the WHO 5th edition classification of CNS tumors at our center from January 2009 to January 2022 were included. Patients were divided into WHO 2-3 grade group and WHO 4 grade group. Integrate diagnoses were retrospectively confirmed according to WHO 2016 and 2021 classification. Clinical and MRI characteristics were reviewed, and survival analysis was performed. RESULTS: A total of 60 patients were enrolled. 21.67% (13/60) of all patients changed tumor grade from WHO 4th edition classification to WHO 5th edition. Of these, 21.43% (6/28) of grade II astrocytoma and 58.33% (7/12) of grade III astrocytoma according to WHO 4th edition classification changed to grade 4 according to WHO 5th edition classification. Sex (p = 0.042), recurrent glioma (p = 0.006), and Ki-67 index (p < 0.001) of pathological examination were statistically different in the WHO grade 2-3 group (n = 27) and WHO grade 4 group (n = 33). CDK6 (p = 0.004), FGFR2 (p = 0.003), and MYC (p = 0.004) alterations showed an enrichment in the WHO grade 4 group. Patients with higher grade showed shorter mOS (mOS = 75.9 m, 53.6 m, 26.4 m for grade 2, 3, and 4, respectively, p = 0.01). CONCLUSIONS: Patients diagnosed as WHO grade 4 according to the 5th edition WHO classification based on molecular alterations are more likely to have poorer prognosis. Therefore, treatment should be tailored to their individual needs. Further research is needed for the management of IDH-mutant astrocytoma is needed in the future.


Asunto(s)
Astrocitoma , Imagen por Resonancia Magnética , Mutación , Clasificación del Tumor , Organización Mundial de la Salud , Humanos , Astrocitoma/genética , Astrocitoma/clasificación , Astrocitoma/patología , Astrocitoma/diagnóstico por imagen , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Imagen por Resonancia Magnética/métodos , Pronóstico , Isocitrato Deshidrogenasa/genética , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Neoplasias del Sistema Nervioso Central/diagnóstico por imagen , Anciano , Adulto Joven , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Adolescente
5.
J Imaging Inform Med ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075250

RESUMEN

In the domain of medical image segmentation, traditional diffusion probabilistic models are hindered by local inductive biases stemming from convolutional operations, constraining their ability to model long-term dependencies and leading to inaccurate mask generation. Conversely, Transformer offers a remedy by obviating the local inductive biases inherent in convolutional operations, thereby enhancing segmentation precision. Currently, the integration of Transformer and convolution operations mainly occurs in two forms: nesting and stacking. However, both methods address the bias elimination at a relatively large granularity, failing to fully leverage the advantages of both approaches. To address this, this paper proposes a conditional diffusion segmentation model named TransDiffSeg, which combines Transformer with convolution operations from traditional diffusion models in a parallel manner. This approach eliminates the accumulated local inductive bias of convolution operations at a finer granularity within each layer. Additionally, an adaptive feature fusion block is employed to merge conditional semantic features and noise features, enhancing global semantic information and reducing the Transformer's sensitivity to noise features. To validate the impact of granularity in bias elimination on performance and the impact of Transformer in alleviating the accumulated local inductive biases of convolutional operations in diffusion probabilistic models, experiments are conducted on the AMOS22 dataset and BTCV dataset. Experimental results demonstrate that eliminating local inductive bias at a finer granularity significantly improves the segmentation performance of diffusion probabilistic models. Furthermore, the results confirm that the finer the granularity of bias elimination, the better the segmentation performance.

6.
J Trace Elem Med Biol ; 86: 127501, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39053339

RESUMEN

PURPOSE: While copper (Cu) is essential for biological organisms, excessive Cu can be harmful. Ferroptosis is a programmed cell death pathway, but the role of ferroptosis in renal injury induced by Cu is limited. The aim of this study was to investigate the role of ferroptosis in kidney injury in chickens and the molecular mechanism by which Cu promotes renal ferroptosis. MATERIALS AND METHODS: Chicken were subjected to Cu treatment by artificially adding excess Cu to the basal diet (the Cu concentration in the diet was supplemented to 110-330 mg/kg), and the impact on kidney fibrosis, tissue structure, and ferroptosis-related molecular markers was studied. Then, the expression levels of genes and proteins related to ferroptosis, iron metabolism and ferroautophagy were detected to explore the promoting effect of Cu on ferroptosis in chicken kidney. MAIN FINDINGS: Cu treatment resulted in significant fibrosis and tissue structure damage in chicken kidneys. Molecular analysis revealed a significant upregulation of LC3Ⅱ, P62, ATG5, and NCOA4, along with a decrease in FTH1 and FTL protein levels. Additionally, crucial markers of ferroptosis, including the loss of GPX4, SLC7A11, and FSP1, and an increase in PTGS2 and ACSL4 protein levels, were observed in chicken kidneys after Cu exposure. CONCLUSION: Our study showed that dietary Cu excess caused kidney injury in brochickens and exhibited ferroptosis-related features, including lipid peroxidation, reduction of ferritin, and downregulation of FSP1 and GPX4. These results indicate that excess Cu can induce renal ferroptosis and lead to kidney injury in chickens. This study highlights the complex interplay between Cu ions and ferroptosis in the context of renal injury and provides a new perspective for understanding the mechanism of Cu-induced renal injury.

7.
BMC Neurol ; 24(1): 202, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877400

RESUMEN

BACKGROUND: Intratumoral hemorrhage, though less common, could be the first clinical manifestation of glioma and is detectable via MRI; however, its exact impacts on patient outcomes remain unclear and controversial. The 2021 WHO CNS 5 classification emphasised genetic and molecular features, initiating the necessity to establish the correlation between hemorrhage and molecular alterations. This study aims to determine the prevalence of intratumoral hemorrhage in glioma subtypes and identify associated molecular and clinical characteristics to improve patient management. METHODS: Integrated clinical data and imaging studies of patients who underwent surgery at the Department of Neurosurgery at Peking Union Medical College Hospital from January 2011 to January 2022 with pathological confirmation of glioma were retrospectively reviewed. Patients were divided into hemorrhage and non-hemorrhage groups based on preoperative magnetic resonance imaging. A comparison and survival analysis were conducted with the two groups. In terms of subgroup analysis, we classified patients into astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant, 1p/19q-codeleted; glioblastoma, IDH-wildtype; pediatric-type gliomas; or circumscribed glioma using integrated histological and molecular characteristics, according to WHO CNS 5 classifications. RESULTS: 457 patients were enrolled in the analysis, including 67 (14.7%) patients with intratumoral hemorrhage. The hemorrhage group was significantly older and had worse preoperative Karnofsky performance scores. The hemorrhage group had a higher occurrence of neurological impairment and a higher Ki-67 index. Molecular analysis indicated that CDKN2B, KMT5B, and PIK3CA alteration occurred more in the hemorrhage group (CDKN2B, 84.4% vs. 62.2%, p = 0.029; KMT5B, 25.0% vs. 8.9%, p = 0.029; and PIK3CA, 81.3% vs. 58.5%, p = 0.029). Survival analysis showed significantly worse prognoses for the hemorrhage group (hemorrhage 18.4 months vs. non-hemorrhage 39.1 months, p = 0.01). In subgroup analysis, the multivariate analysis showed that intra-tumoral hemorrhage is an independent risk factor only in glioblastoma, IDH-wildtype (162 cases of 457 overall, HR = 1.72, p = 0.026), but not in other types of gliomas. The molecular alteration of CDK6 (hemorrhage group p = 0.004, non-hemorrhage group p < 0.001), EGFR (hemorrhage group p = 0.003, non-hemorrhage group p = 0.001), and FGFR2 (hemorrhage group p = 0.007, non-hemorrhage group p = 0.001) was associated with shorter overall survival time in both hemorrhage and non-hemorrhage groups. CONCLUSIONS: Glioma patients with preoperative intratumoral hemorrhage had unfavorable prognoses compared to their nonhemorrhage counterparts. CDKN2B, KMT5B, and PIK3CA alterations were associated with an increased occurrence of intratumoral hemorrhage, which might be future targets for further investigation of intratumoral hemorrhage.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Masculino , Femenino , Glioma/complicaciones , Glioma/genética , Glioma/cirugía , Glioma/patología , Persona de Mediana Edad , Estudios Retrospectivos , Pronóstico , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/cirugía , Neoplasias Encefálicas/patología , Anciano , Estudios de Cohortes , Adulto Joven
8.
Cell Commun Signal ; 22(1): 333, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890642

RESUMEN

Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Inflamación , Microambiente Tumoral , Glioblastoma/patología , Glioblastoma/genética , Humanos , Inflamación/patología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Apoptosis , Animales
9.
Med Biol Eng Comput ; 62(10): 2999-3012, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38727759

RESUMEN

In clinical practice, the morphology of the left atrial appendage (LAA) plays an important role in the selection of LAA closure devices for LAA closure procedures. The morphology determination is influenced by the segmentation results. The LAA occupies only a small part of the entire 3D medical image, and the segmentation results are more likely to be biased towards the background region, making the segmentation of the LAA challenging. In this paper, we propose a lightweight attention mechanism called fusion attention, which imitates human visual behavior. We process the 3D image of the LAA using a method that involves overview observation followed by detailed observation. In the overview observation stage, the image features are pooled along the three dimensions of length, width, and height. The obtained features from the three dimensions are then separately input into the spatial attention and channel attention modules to learn the regions of interest. In the detailed observation stage, the attention results from the previous stage are fused using element-wise multiplication and combined with the original feature map to enhance feature learning. The fusion attention mechanism was evaluated on a left atrial appendage dataset provided by Liaoning Provincial People's Hospital, resulting in an average Dice coefficient of 0.8855. The results indicate that the fusion attention mechanism achieves better segmentation results on 3D images compared to existing lightweight attention mechanisms.


Asunto(s)
Apéndice Atrial , Imagenología Tridimensional , Humanos , Apéndice Atrial/diagnóstico por imagen , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Fibrilación Atrial/cirugía , Fibrilación Atrial/fisiopatología , Fibrilación Atrial/diagnóstico por imagen
10.
Metab Brain Dis ; 39(5): 719-729, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38687460

RESUMEN

BACKGROUND: Glioma is the main subtype of primary central nervous system (CNS) tumor with high malignancy and poor prognosis under current therapeutic approaches. Glycolysis and suppressive tumor microenvironment (TME) are key markers of glioma with great importance for aggressive features of glioma and inferior clinical outcomes. Hexokinase 3 (HK3) is an important rate-limiting enzyme in glycolysis, but its function in glioma remains unknown. METHODS: This study comprehensively assessed the expression distribution and immunological effect of HK3 via pan-cancer analysis based on datasets from Genotype Tissue Expression (GTEx), Cancer Cell Line Encyclopedia (CCLE), and The Cancer Genome Atlas (TCGA). Furthermore, it explored the malignant phenotype and genomic landscape between low-HK3 and high-HK3 expression groups in gliomas from Chinese Glioma Genome Atlas (CGGA) and TCGA. Moreover, data from the TIMER website predicted the relationship between macrophage infiltration and HK3 expression. Also, single-cell sequencing data were used to validate the relationship. RESULTS: For pan-cancer patients, HK3 was expressed in various cancers. The results showed that HK3 was highly expressed in gliomas and positively correlated with tumor-infiltrating immune cells (TIICs), immune checkpoints, immunomodulators, and chemokines. Meanwhile, HK3 expression was highest in normal immune cells and tissues. In gliomas, the expression of HK3 was found to be closely correlated with the malignant clinical characteristics and the infiltration of macrophages. Also, HK3 was proven to be positively associated with macrophage through single-cell sequencing data and immunohistochemistry techniques. Finally, it is predicted that samples with high HK3 expression are often malignant entities and also significant genomic aberrations of driver oncogenes. CONCLUSIONS: This is the first comprehensive research to figure out the relationship between HK3 and TME characteristics in gliomas. HK3 is positively associated with macrophage infiltration and can induce the immunosuppressive TME and malignant phenotype of gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Hexoquinasa , Microambiente Tumoral , Humanos , Glioma/patología , Glioma/genética , Glioma/inmunología , Glioma/enzimología , Hexoquinasa/metabolismo , Hexoquinasa/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/inmunología , Microambiente Tumoral/inmunología , Macrófagos/metabolismo , Macrófagos/patología , Regulación Neoplásica de la Expresión Génica
11.
Front Neurosci ; 18: 1308627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38595969

RESUMEN

Background: The 2021 World Health Organization Classification of Central Nervous System Tumors updates glioma subtyping and grading system, and incorporates EGFR amplification (Amp) as one of diagnostic markers for glioblastoma (GBM). Purpose: This study aimed to describe the frequency, clinical value and molecular correlation of EGFR Amp in diffuse gliomas based on the latest classification. Methods: We reviewed glioma patients between 2011 and 2022 at our hospital, and included 187 adult glioma patients with available tumor tissue for detection of EGFR Amp and other 59 molecular markers of interest. Clinical, radiological and pathological data was analyzed based on the status of EGFR Amp in different glioma subtypes. Results: 163 gliomas were classified as adult-type diffuse gliomas, and the number of astrocytoma, oligodendroglioma and GBM was 41, 46, and 76. EGFR Amp was more common in IDH-wildtype diffuse gliomas (66.0%) and GBM (85.5%) than IDH-mutant diffuse gliomas (32.2%) and its subtypes (astrocytoma, 29.3%; oligodendroglioma, 34.8%). EGFR Amp did not stratify overall survival (OS) in IDH-mutant diffuse gliomas and astrocytoma, while was significantly associated with poorer OS in IDH-wildtype diffuse gliomas, histologic grade 2 and 3 IDH-wildtype diffuse astrocytic gliomas and GBM. Conclusion: Our study validated EGFR Amp as a diagnostic marker for GBM and still a useful predictor for shortened OS in this group.

12.
Discov Oncol ; 15(1): 85, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517553

RESUMEN

Predictive markers and prognostic models are useful for the individualization of cancer treatment. In this study, we sought to identify clinical and molecular factors to predict overall survival in recurrent glioma patients receiving bevacizumab-containing regimens. A cohort of 102 patients was retrospectively collected from June 2011 to January 2022 at our institution. A nomogram was generated by Cox regression and feature selection algorithms based on 19 clinicopathological and 60 molecular variables. The model's performance was internally evaluated by bootstrapping in terms of discrimination and calibration. The median overall survival from the initiation of bevacizumab administration to death or last follow-up was 11.6 months (95% CI: 9.2-13.8 months) for all 102 patients, 10.2 months (95% CI: 6.4-13.3 months) for 66 patients with grade 4 tumors, and 13.8 months (lower limit of 95% CI: 11.5 months) for 36 patients with tumors of grade lower or not available. In the final model, a lower WHO 2021 grade (Grade lower or not available vs. Grade 4, HR: 0.398, 95% CI: 0.223-0.708, p = 0.00172), having received adjuvant radiochemotherapy (Yes vs. No, HR: 0.488, 95% CI: 0.268-0.888, p = 0.0189), and wildtype EGFR (Wildtype vs. Altered, HR: 0.193, 95% CI: 0.0506-0.733, p = 0.0157; Not available vs. Altered, HR: 0.386, 95% CI: 0.184-0.810, p = 0.0118) were significantly associated with longer overall survival in multivariate Cox regression. The overall concordance index was 0.652 (95% CI: 0.566-0.714), and the areas under the time-dependent curves for 6-, 12-, and 18-month overall survival were 0.677 (95% CI: 0.516-0.816), 0.654 (95% CI: 0.470-0.823), and 0.675 (95% CI: 0.491-0.860), respectively. A prognostic model for overall survival in recurrent glioma patients treated with bevacizumab-based therapy was established and internally validated. It could serve as a reference tool for clinicians to assess the extent the patients may benefit from bevacizumab and stratify their treatment response.

13.
J Imaging Inform Med ; 37(3): 1-16, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38347391

RESUMEN

Convolutional Neural Networks have been widely applied in medical image segmentation. However, the existence of local inductive bias in convolutional operations restricts the modeling of long-term dependencies. The introduction of Transformer enables the modeling of long-term dependencies and partially eliminates the local inductive bias in convolutional operations, thereby improving the accuracy of tasks such as segmentation and classification. Researchers have proposed various hybrid structures combining Transformer and Convolutional Neural Networks. One strategy is to stack Transformer blocks and convolutional blocks to concentrate on eliminating the accumulated local bias of convolutional operations. Another strategy is to nest convolutional blocks and Transformer blocks to eliminate bias within each nested block. However, due to the granularity of bias elimination operations, these two strategies cannot fully exploit the potential of Transformer. In this paper, a parallel hybrid model is proposed for segmentation, which includes a Transformer branch and a Convolutional Neural Network branch in encoder. After parallel feature extraction, inter-layer information fusion and exchange of complementary information are performed between the two branches, simultaneously extracting local and global features while eliminating the local bias generated by convolutional operations within the current layer. A pure convolutional operation is used in decoder to obtain final segmentation results. To validate the impact of the granularity of bias elimination operations on the effectiveness of local bias elimination, the experiments in this paper were conducted on Flare21 dataset and Amos22 dataset. The average Dice coefficient reached 92.65% on Flare21 dataset, and 91.61% on Amos22 dataset, surpassing comparative methods. The experimental results demonstrate that smaller granularity of bias elimination operations leads to better performance.


Asunto(s)
Redes Neurales de la Computación , Humanos , Abdomen/diagnóstico por imagen , Abdomen/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Tomografía Computarizada por Rayos X , Bases de Datos Factuales
14.
J Mol Neurosci ; 74(1): 17, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315329

RESUMEN

Cognitive impairment is a common feature among patients with diffuse glioma. The objective of the study is to investigate the relationship between preoperative cognitive function and clinical as well as molecular factors, firstly based on the new 2021 World Health Organization's updated classification of central nervous system tumors. A total of 110 diffuse glioma patients enrolled underwent preoperative cognitive assessments using the Mini-Mental State Examination and Montreal Cognitive Assessment. Clinical information was collected from medical records, and gene sequencing was performed to analyze the 18 most influenced genes. The differences in cognitive function between patients with and without glioblastoma were compared under both the 2016 and 2021 WHO classification of tumors of the central nervous system to assess their effect of differentiation on cognition. The study found that age, tumor location, and glioblastoma had significant differences in cognitive function. Several genetic alterations were significantly correlated with cognition. Especially, IDH, CIC, and ATRX are positively correlated with several cognitive domains, while most other genes are negatively correlated. For most focused genes, patients with a low number of genetic alterations tended to have better cognitive function. Our study suggested that, in addition to clinical characteristics such as age, histological type, and tumor location, molecular characteristics play a crucial role in cognitive function. Further research into the mechanisms by which tumors affect brain function is expected to enhance the quality of life for glioma patients. This study highlights the importance of considering both clinical and molecular factors in the management of glioma patients to improve cognitive outcomes.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Calidad de Vida , Glioma/patología , Mutación , Organización Mundial de la Salud , Isocitrato Deshidrogenasa/genética
15.
Exp Ther Med ; 27(2): 90, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38274346

RESUMEN

Cerebral glial tumors have become increasingly common in human immunodeficiency virus (HIV)-positive patients. The present study aimed to report a series of such cases, explore their clinical and pathological characteristics and subject all the reported cases to a survival analysis. The characteristics, management and prognosis of 10 HIV-positive patients with brain gliomas enrolled in a single hospital were investigated in detail. Immunohistochemical assessment of CD31, CD68 and CD163 was performed in the 10 HIV-positive patients with glioma and 18 HIV-negative patients with glioma. The relevant literature was also reviewed using relevant search terms. The potential predictive factors were screened by univariate and multivariate logistic regression analyses, and a nomogram was established based on the potential predictive factors. A total of 50 patients, including the 10 primary cases, were included in the survival analysis. The median survival time was 9 months. The gliomas of HIV-negative patients had a lower cell count of CD163+ cells than those of HIV-positive patients. High CD4+ T-cell count and the use of highly active antiretroviral therapy (HAART) tended to increase the median survival duration, although not significantly according to the log-rank analysis. In the univariate analysis, only surgery, radiotherapy (RT) and World Health Organization (WHO) tumor grade had significant associations with overall survival. In the multivariate analysis, only RT and WHO grade were independent predictors. In conclusion, gliomas may occur more frequently in HIV-positive populations than is currently recognized. The survival duration of most HIV-positive patients with glioma is determined by the tumor rather than HIV status. Adjuvant radiotherapy and the WHO grade of the glioma are predicted to be independent prognostic factors. Surgical resection followed by RT plus regular HAART is recommended for patients with glioma who are HIV-positive.

16.
Sci Total Environ ; 913: 169642, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38159754

RESUMEN

Terbuthylazine (TBA) is a widely prevalent pesticide pollutant, which is a global concern due to its environmental residual. However, the toxic mechanism of TBA have not been fully solved. Here, we explored that TBA exposure disrupts the intestinal flora and aggravated disturbance of mitochondrial quality control and PANapoptosis in hepatocytes via gut-liver axis. Our findings demonstrated that TBA exposure induced significant damage to the jejunum barrier, evidenced by a marked decrease in the expression of Occludin and ZO-1. Moreover. TBA led to intestinal microflora disorder, manifested as the decreased abundance of Firmicutes, and increased abundance of the Nitrospirota, Chloroflexi, Desulfobacterota, Crenarchaeota, Myxococcota, and Planctomycetota. Meanwhile, intestinal microflora disorder affected the biological processes of lipid metabolism and cell growth and death of hepatocytes by RNA-Seq analysis. Furthermore, TBA could induced mitochondrial quality control imbalance, including mitochondrial redox disorders, lower activity of mitochondrial fusion and biogenesis decrease, and increasing level of mitophagy. Subsequently, TBA significantly increased expression levels of pyroptosis, apoptosis and necroptosis-related proteins. In general, these results demonstrated the underlying mechanisms of TBA-induced hepatotoxicity induced via the gut-liver axis, which provides a theoretical basis for further research of ecotoxicology of TBA.


Asunto(s)
Microbioma Gastrointestinal , Triazinas , Animales , Pollos , Hígado/metabolismo , Hepatocitos
17.
Int J Neurosci ; : 1-8, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38014447

RESUMEN

Von Hippel-Lindau (VHL) syndrome is a multi-organ neoplastic disease characterized by highly vascular and cystic tumors in the central nervous system (CNS), retina, and visceral lesions, which are mainly caused by germline mutations in VHL. We aimed to detect novel mutations in VHL gene in families with VHL. Here, a large consanguineous four-generation family with variant phenotypes of VHL syndrome was recruited, and its molecular genetics were tested via Sanger sequencing. And various tools and databases were used to predict the variant pathogenicity, frequency, and protein function. Genetic investigation detected a c.351G > A nonsense mutation in VHL that altered the downstream reading frame and created a premature TGA stop signal, resulting in severely truncated pVHL (p.Trp117Ter). This mutation is absent from most public databases, and functional prediction bioinformatic tools demonstrated that this residue is conserved and that this variant is highly likely to be deleterious. The c.315G > A nonsense mutation in VHL is the causal mutation of this kindred that may lead to clear familial aggregation of VHL syndrome because of the dysfunction of the truncated pVHL.

18.
J Mol Neurosci ; 73(11-12): 946-955, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37889394

RESUMEN

Advanced age is an important risk factor for the worse clinical presentation of gliomas, especially glioblastoma (GBM). The tumor microenvironment (TME) in elderly GBM (eGBM) patients is considerably different from that in young ones, which causes the inferior clinical outcome. Based on the data from the Chinese Glioma Genome Atlas RNA sequence (CGGA RNA-seq), the Cancer Genome Atlas RNA array (TCGA RNA-array), and gene set enrichment (GSE) 16011 array sets, the differential genes and function between eGBM (≥ 60 years old) and young GBM (yGBM, 20-60 years old) groups were explored. Immunohistochemistry (IHC) was utilized to depict the abundance of CD8+ cells (the main resource of IFN-γ) and IFITM2 protein expression in GBM samples. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting (WB) were performed to verify the link between IFN-γ and IFITM2. Moreover, the small-interfering RNA (siRNA) of IFITM2 was used to explore the function of IFITM2 in GBM. Characterized by inflammatory TME and higher IFITM2 expression, eGBM harbored a shorter survival time. Chemotaxis and inflammatory cytokine-related genes were enriched in the eGBM group, with more infiltrative CD8+ T cells. The IHC of CD8 and IFITM2-staining could demonstrate these results. In addition, the IFN-γ response pathway was activated in eGBM and resulted in a dismal outcome. Next, it was found that IFITM2 triggered by IFN-γ played a key role in IFN-γ-induced malignant phenotype in eGBM.


Asunto(s)
Glioblastoma , Glioma , Humanos , Anciano , Persona de Mediana Edad , Adulto Joven , Adulto , Glioblastoma/genética , Glioblastoma/patología , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/patología , Glioma/metabolismo , Fenotipo , ARN , Microambiente Tumoral , Proteínas de la Membrana/genética
19.
Brain Sci ; 13(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37759950

RESUMEN

Glioma is the most common primary malignant brain tumor. The poor prognosis of gliomas, especially glioblastoma (GBM), is associated with their unique molecular landscape and tumor microenvironment (TME) features. The epidermal growth factor receptor (EGFR) gene is one of the frequently altered loci in gliomas, leading to the activation of the EGFR signaling pathway and thus, promoting the genesis of gliomas. Whether there exist factors within the TME that can lead to EGFR activation in the context of gliomas is currently unexplored. In total, 702 samples from The Cancer Genome Atlas (TCGA) and 325 samples from The Chinese Glioma Genome Atlas (CGGA) were enrolled in this study. Gene signatures related to EGFR signaling and interferon-γ (IFN-γ) response were established via the LASSO-COX algorithm. Gene Set Enrichment Analysis (GSEA) and Gene Ontology (GO) analysis were applied for function exploration. Kaplan-Meier (KM) curves and single sample GSEA (ssGSEA) of immune cell subpopulations were performed to analyze the prognosis and TME characteristics of different subgroups. Moreover, Western blotting (WB) and flow cytometry (FCM) demonstrated the correlation between IFN-γ and EGFR signaling activation and the subsequent induction of programmed death ligand 1 (PD-L1) expression. An EGFR signaling-related risk score was established, and a higher score was correlated with poorer prognosis and a more malignant phenotype in gliomas. Biological function analysis revealed that a higher EGFR-related score was significantly associated with various cytokine response pathways, especially IFN-γ. Long-term (7 days) exposure to IFN-γ (400 ng/mL) induced the activation of EGFR signaling in the u87 cell line. Next, an IFN-γ response-related risk score was established; the combination of these two scores could be used to further reclassify gliomas into subtypes with different clinical features and TME features. Double high-risk samples tended to have a poorer prognosis and more immunosuppressive TME. Additionally, FCM discovered that the activation of EGFR signaling via EGF (100 ng/mL) could trigger PD-L1 protein expression. This research indicates that IFN-γ, an inflammatory cytokine, can activate the EGFR pathway. The combination of EGFR signaling and IFN-γ response pathway can establish a more precise classification of gliomas.

20.
Cancer Med ; 12(18): 18666-18678, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37667984

RESUMEN

BACKGROUND: The latest fifth edition of the World Health Organization (WHO) classification of the central nervous system (CNS) tumors (WHO CNS 5 classification) released in 2021 defined astrocytoma, IDH-mutant, Grade 4. However, the understanding of this subtype is still limited. We conducted this study to describe the features of astrocytoma, IDH-mutant, Grade 4 and explored the similarities and differences between histological and molecular subtypes. METHODS: Patients who underwent surgery from January 2011 to January 2022, classified as astrocytoma, IDH-mutant, Grade 4 were included in this study. Clinical, radiological, histopathological, molecular pathological, and survival data were collected for analysis. RESULTS: Altogether 33 patients with astrocytoma, IDH-mutant, Grade 4 were selected, including 20 with histological and 13 with molecular WHO Grade 4 astrocytoma. Tumor enhancement, intratumoral-necrosis like presentation, larger peritumoral edema, and more explicit tumor margins were frequently observed in histological WHO Grade 4 astrocytoma. Additionally, molecular WHO Grade 4 astrocytoma showed a tendency for relatively longer overall survival, while a statistical significance was not reached (47 vs. 25 months, p = 0.22). TP53, CDK6, and PIK3CA alteration was commonly observed, while PIK3R1 (p = 0.033), Notch1 (p = 0.027), and Mycn (p = 0.027) alterations may affect the overall survival of molecular WHO Grade 4 astrocytomas. CONCLUSIONS: Our study scrutinized IDH-mutant, Grade 4 astrocytoma. Therefore, further classification should be considered as the prognosis varied between histological and molecular WHO Grade 4 astrocytomas. Notably, therapies aiming at PIK3R1, Notch 1, and Mycn may be beneficial.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Glioblastoma , Humanos , Proteína Proto-Oncogénica N-Myc , Isocitrato Deshidrogenasa/genética , Mutación , Astrocitoma/genética , Neoplasias del Sistema Nervioso Central/genética , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA