Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4187-4200, 2023 Aug.
Artículo en Chino | MEDLINE | ID: mdl-37802787

RESUMEN

This study aimed to explore the mechanism of Qilongtian Capsules in treating acute lung injury(ALI) based on network pharmacology prediction and in vitro experimental validation. Firstly, UPLC-Q-TOF-MS/MS was used to analyze the main chemical components of Qilongtian Capsules, and related databases were used to obtain its action targets and ALI disease targets. STRING database was used to build a protein-protein interaction(PPI) network. Metascape database was used to conduct enrichment analysis of Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG). AutoDock software was used to perform molecular docking verification on the main active components and key targets. Then, the RAW264.7 cells were stimulated with lipopolysaccharide(LPS) for in vitro experiments. Cell viability was measured by MTT and ROS level was measured by DCFH-DA. NO content was measured by Griess assay, and IL-1ß, IL-6, and TNF-α mRNA expression was detected by RT-PCR. The predicted targets were preliminarily verified by investigating the effect of Qilongtian Capsules on downstream cytokines. Eighty-four compounds were identified by UPLC-Q-TOF-MS/MS. Through database retrieval, 44 active components with 589 target genes were screened out. There were 560 ALI disease targets, and 65 intersection targets. PPI network topology analysis revealed 10 core targets related to ALI, including STAT3, JUN, VEGFA, CASP3, and MMP9. KEGG enrichment analysis showed that Qilongtian Capsules mainly exerted an anti-ALI effect by regulating cancer pathway, AGE-RAGE, MAPK, and JAK-STAT signaling pathways. The results of molecular docking showed that the main active components in Qilongtian Capsules, including crenulatin, ginsenoside F_1, ginsenoside Rb_1, ginsenoside Rd, ginsenoside Rg_1, ginsenoside Rg_3, notoginsenoside Fe, notoginsenoside G, notoginsenoside R_1, notoginsenoside R_2, and notoginsenoside R_3, had good binding affinities with the corresponding protein targets STAT3, JUN, VEGFA, CASP3, and MMP9. Cellular experiments showed that Qilongtian Capsules at 0.1, 0.25, and 0.5 mg·mL~(-1) reduced the release of NO, while Qilongtian Capsules at 0.25 and 0.5 mg·mL~(-1) reduced ROS production, down-regulated mRNA expression of IL-1ß, IL-6, TNF-α, and inhibited the inflammatory cascade. In summary, Qilongtian Capsules may exert therapeutic effects on ALI through multiple components and targets.


Asunto(s)
Lesión Pulmonar Aguda , Medicamentos Herbarios Chinos , Ginsenósidos , Humanos , Factor de Necrosis Tumoral alfa , Caspasa 3 , Metaloproteinasa 9 de la Matriz , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Especies Reactivas de Oxígeno , Espectrometría de Masas en Tándem , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/genética , Cápsulas , ARN Mensajero , Medicamentos Herbarios Chinos/farmacología
2.
Cell Res ; 33(5): 355-371, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36882514

RESUMEN

Posttranslational modifications add tremendous complexity to proteomes; however, gaps remain in knowledge regarding the function and regulatory mechanism of newly discovered lysine acylation modifications. Here, we compared a panel of non-histone lysine acylation patterns in metastasis models and clinical samples, and focused on 2-hydroxyisobutyrylation (Khib) due to its significant upregulation in cancer metastases. By the integration of systemic Khib proteome profiling in 20 paired primary esophageal tumor and metastatic tumor tissues with CRISPR/Cas9 functional screening, we identified N-acetyltransferase 10 (NAT10) as a substrate for Khib modification. We further showed that Khib modification at lysine 823 in NAT10 functionally contribute to metastasis. Mechanistically, NAT10 Khib modification enhances its interaction with deubiquitinase USP39, resulting in increased NAT10 protein stability. NAT10 in turn promotes metastasis by increasing NOTCH3 mRNA stability in an N4-acetylcytidine-dependent manner. Furthermore, we discovered a lead compound #7586-3507 that inhibited NAT10 Khib modification and showed efficacy in tumor models in vivo at a low concentration. Together, our findings bridge newly identified lysine acylation modifications with RNA modifications, thus providing novel insights into epigenetic regulation in human cancer. We propose that pharmacological inhibition of NAT10 K823 Khib modification constitutes a potential anti-metastasis strategy.


Asunto(s)
Lisina , Neoplasias , Humanos , Lisina/metabolismo , Epigénesis Genética , Acilación , Procesamiento Proteico-Postraduccional , Acetiltransferasas/metabolismo , Neoplasias/genética , Acetiltransferasas N-Terminal/genética , Acetiltransferasas N-Terminal/metabolismo , Proteasas Ubiquitina-Específicas/genética
3.
Neural Regen Res ; 17(6): 1210-1227, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34782555

RESUMEN

Age-related neurodegenerative disorders such as Alzheimer's disease (AD) have become a critical public health issue due to the significantly extended human lifespan, leading to considerable economic and social burdens. Traditional therapies for AD such as medicine and surgery remain ineffective, impractical, and expensive. Many studies have shown that a variety of bioactive substances released by physical exercise (called "exerkines") help to maintain and improve the normal functions of the brain in terms of cognition, emotion, and psychomotor coordination. Increasing evidence suggests that exerkines may exert beneficial effects in AD as well. This review summarizes the neuroprotective effects of exerkines in AD, focusing on the underlying molecular mechanism and the dynamic expression of exerkines after physical exercise. The findings described in this review will help direct research into novel targets for the treatment of AD and develop customized exercise therapy for individuals of different ages, genders, and health conditions.

4.
Neural Regen Res ; 16(10): 2109-2120, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33642401

RESUMEN

Luteolin is neuroprotective for retinal ganglion cells and retinal pigment epithelial cells after oxidative injury, whereby it can inhibit microglial neurotoxicity. Therefore, luteolin holds the potential to be useful for treatment of retinal diseases. The purpose of this study was to investigate whether luteolin exhibits neuroprotective effects on rod cells in rd10 mice, a slow photoreceptor-degenerative model of retinitis pigmentosa. Luteolin (100 mg/kg) intraperitoneally injected daily from postnatal day 14 (P14) to P25 significantly enhanced the visual performance and retinal light responses of rd10 mice at P25. Moreover, it increased the survival of photoreceptors and improved retinal structure. Mechanistically, luteolin treatment attenuated increases in reactive oxygen species, photoreceptor apoptosis, and reactive gliosis; increased mRNA levels of anti-inflammatory cytokines while lowering that of pro-inflammatory and chemoattractant cytokines; and lowered the ratio of phospho-JNK/JNK. Application of the JNK inhibitor SP600125 exerted a similar protective effect to luteolin, suggesting that luteolin delays photoreceptor degeneration and functional deterioration in rd10 mice through regulation of retinal oxidation and inflammation by inhibiting the JNK pathway. Therefore, luteolin may be useful as a supplementary treatment for retinitis pigmentosa. This study was approved by the Qualified Ethics Committee of Jinan University, China (approval No. IACUC-20181217-02) on December 17, 2018.

5.
Restor Neurol Neurosci ; 37(6): 571-581, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31796710

RESUMEN

Many ocular diseases (such as glaucoma, diabetic retinopathy, age-related macular degeneration, and traumatic eye injuries) can result in the degeneration of retinal cells and the subsequent loss of vision. Some kinds of treatments, such as drugs, stem cell transplantation and surgery are reported to be effective in certain patients. However, no confirmatively effective, convenient and low-price intervention has been available so far. Physical exercise has been reported to exert neuroprotective effects on several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Studies investigating the potential impacts of exercise on retinal diseases are rapidly emerging. Here we review these up-to-date findings from both human and animal studies, and discuss the possible mechanisms underlying exercise-elicited protection on retina.


Asunto(s)
Ejercicio Físico/fisiología , Neuroprotección/fisiología , Condicionamiento Físico Animal/fisiología , Retina/fisiología , Enfermedades de la Retina/prevención & control , Animales , Humanos , Enfermedades Neurodegenerativas/fisiopatología , Enfermedades Neurodegenerativas/prevención & control , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/tendencias , Enfermedades de la Retina/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...