Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
World J Pediatr ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713366

RESUMEN

BACKGROUND: SARS-CoV-2 continues to mutate over time, and reports on children infected with Omicron BA.5 are limited. We aimed to analyze the specific symptoms of Omicron-infected children and to improve patient care. METHODS: We selected 315 consecutively hospitalized children with Omicron BA.5 and 16,744 non-Omicron-infected febrile children visiting the fever clinic at our hospital between December 8 and 30, 2022. Specific convulsions and body temperatures were compared between the two cohorts. We analyzed potential associations between convulsions and vaccination, and additionally evaluated the brain damage among severe Omicron-infected children. RESULTS: Convulsion rates (97.5% vs. 4.3%, P < 0.001) and frequencies (median: 2.0 vs. 1.6, P < 0.001) significantly differed between Omicron-infected and non-Omicron-infected febrile children. The body temperatures of Omicron-infected children were significantly higher during convulsions than when they were not convulsing and those of non-Omicron-infected febrile children during convulsions (median: 39.5 vs. 38.2 and 38.6 °C, both P < 0.001). In the three Omicron-subgroups, the temperature during convulsions was proportional to the percentage of patients and significantly differed ( P < 0.001), while not in the three non-Omicron-subgroups ( P = 0.244). The convulsion frequency was lower in the 55 vaccinated children compared to the 260 non-vaccinated children (average: 1.8 vs. 2.1, P < 0.001). The vaccination dose and convulsion frequency in Omicron-infected children were significantly correlated ( P < 0.001). Fifteen of the 112 severe Omicron cases had brain damage. CONCLUSIONS: Omicron-infected children experience higher body temperatures and frequencies during convulsions than those of non-Omicron-infected febrile children. We additionally found evidence of brain damage caused by infection with omicron BA.5. Vaccination and prompt fever reduction may relieve symptoms.

2.
Int J Med Sci ; 21(7): 1292-1301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818472

RESUMEN

Objective: This study aimed to build and validate a practical web-based dynamic prediction model for predicting renal progression in patients with primary membranous nephropathy (PMN). Method: A total of 359 PMN patients from The First Affiliated Hospital of Fujian Medical University and 102 patients with PMN from The Second Hospital of Longyan between January 2018 to December 2023 were included in the derivation and validation cohorts, respectively. Renal progression was delineated as a decrease in eGFR of 30% or more from the baseline measurement at biopsy or the onset of End-Stage Renal Disease (ESRD). Multivariable Cox regression analysis was employed to identify independent prognostic factors. A web-based dynamic prediction model for renal progression was built and validated, and the performance was assessed using. An analysis of the receiver operating characteristic and the decision curve analysis. Results: In the derivation cohort, 66 (18.3%) patients experienced renal progression during the follow-up period (37.60 ± 7.95 months). The final prediction rule for renal progression included hyperuricemia (HR=2.20, 95%CI 1.26 to 3.86), proteinuria (HR=2.16, 95%CI 1.47 to 3.18), significantly lower serum albumin (HR=2.34, 95%CI 1.51 to 3.68) and eGFR (HR=1.96, 95%CI 1.47 to 2.61), older age (HR=1.85, 95%CI 1.28 to 2.61), and higher sPLA2R-ab levels (HR=2.08, 95%CI 1.43 to 3.18). Scores for each variable were calculated using the regression coefficients in the Cox model. The developed web-based dynamic prediction model, available online at http://imnpredictmodel1.shinyapps.io/dynnomapp, showed good discrimination (C-statistic = 0.72) and calibration (Brier score, P = 0.155) in the validation cohort. Conclusion: We developed a web-based dynamic prediction model that can predict renal progression in patients with PMN. It may serve as a helpful tool for clinicians to identify high-risk PMN patients and tailor appropriate treatment and surveillance strategies.


Asunto(s)
Progresión de la Enfermedad , Tasa de Filtración Glomerular , Glomerulonefritis Membranosa , Humanos , Glomerulonefritis Membranosa/patología , Glomerulonefritis Membranosa/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Pronóstico , Fallo Renal Crónico , Receptores de Fosfolipasa A2/inmunología , Estudios Retrospectivos , Riñón/patología , Riñón/fisiopatología , Factores de Riesgo , Curva ROC , Proteinuria
3.
Chem Commun (Camb) ; 60(44): 5723-5726, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38742267

RESUMEN

Over the past decade, significant progress has been made in the direct C-H acylation of naphthalenes, occurring at the α or ß-positions to yield valuable ketones through Friedel-Crafts acylation or transition-metal-catalysed carbonylative coupling reactions. Nevertheless, highly regioselective acylation of naphthalenes remains a formidable challenge. Herein, we developed a nickel-catalysed reductive ring-opening reaction of 7-oxabenzonorbornadienes with acyl chlorides as the electrophilic coupling partner, providing a new method for the exclusive preparation of ß-acyl naphthalenes.

4.
J Diabetes Res ; 2024: 4815488, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38766319

RESUMEN

Background: Tubulointerstitial injury plays a pivotal role in the progression of diabetic kidney disease (DKD), yet the link between neutrophil extracellular traps (NETs) and diabetic tubulointerstitial injury is still unclear. Methods: We analyzed microarray data (GSE30122) from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs) associated with DKD's tubulointerstitial injury. Functional and pathway enrichment analyses were conducted to elucidate the involved biological processes (BP) and pathways. Weighted gene coexpression network analysis (WGCNA) identified modules associated with DKD. LASSO regression and random forest selected NET-related characteristic genes (NRGs) related to DKD tubulointerstitial injury. Results: Eight hundred ninety-eight DEGs were identified from the GSE30122 dataset. A significant module associated with diabetic tubulointerstitial injury overlapped with 15 NRGs. The hub genes, CASP1 and LYZ, were identified as potential biomarkers. Functional enrichment linked these genes with immune cell trafficking, metabolic alterations, and inflammatory responses. NRGs negatively correlated with glomerular filtration rate (GFR) in the Neph v5 database. Immunohistochemistry (IHC) validated increased NRGs in DKD tubulointerstitial injury. Conclusion: Our findings suggest that the CASP1 and LYZ genes may serve as potential diagnostic biomarkers for diabetic tubulointerstitial injury. Furthermore, NRGs involved in diabetic tubulointerstitial injury could emerge as prospective targets for the diagnosis and treatment of DKD.


Asunto(s)
Biomarcadores , Nefropatías Diabéticas , Trampas Extracelulares , Perfilación de la Expresión Génica , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/metabolismo , Humanos , Biomarcadores/metabolismo , Trampas Extracelulares/metabolismo , Redes Reguladoras de Genes , Bases de Datos Genéticas , Nefritis Intersticial/genética , Nefritis Intersticial/diagnóstico , Tasa de Filtración Glomerular
5.
Chem Commun (Camb) ; 60(17): 2405-2408, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38323634

RESUMEN

Herein we reported a directing-group assisted strategy for nickel-catalysed reductive defluorinative sulfenylation of trifluoropropionic acid derivatives with disulfides in the presence of Zn, involving triple C-F bond cleavage. This process yielded a diverse array of carbonyl-sulfide di-substituted alkenes in moderate to good yields with good functional group tolerance. Specifically, the reactions exhibited high E-selectivity with E/Z ratio up to >99 : 1.

6.
Adv Sci (Weinh) ; 11(9): e2306923, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088530

RESUMEN

Transition metal-catalyzed direct decarboxylative transformations of aromatic carboxylic acids usually require high temperatures, which limit the substrate's scope, especially for late-stage applications. The development of the selective decarbonylative of carboxylic acid derivatives, especially the most fundamental aroyl chlorides, with stable and cheap electrophiles under mild conditions is highly desirable and meaningful, but remains challenging. Herein, a strategy of nickel-catalyzed decarbonylative alkylation of aroyl chlorides via phosphine/nitrogen ligand relay is reported. The simple phosphine ligand is found essential for the decarbonylation step, while the nitrogen ligand promotes the cross-electrophile coupling. Such a ligand relay system can effectively and orderly carry out the catalytic process at room temperature, utilizing easily available aroyl chlorides as an aryl electrophile for reductive alkylation. This discovery provides a new strategy for direct decarbonylative coupling, features operationally simple, mild conditions, and excellent functional group tolerance. The mild approach is applied to the late-stage methylation of various pharmaceuticals. Extensive experiments are carried out to provide insights into the reaction pathway and support the ligand relay process.

7.
Chem Rev ; 123(22): 12313-12370, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37942891

RESUMEN

Late-stage functionalization (LSF) introduces functional group or structural modification at the final stage of the synthesis of natural products, drugs, and complex compounds. It is anticipated that late-stage functionalization would improve drug discovery's effectiveness and efficiency and hasten the creation of various chemical libraries. Consequently, late-stage functionalization of natural products is a productive technique to produce natural product derivatives, which significantly impacts chemical biology and drug development. Carbon-carbon bonds make up the fundamental framework of organic molecules. Compared with the carbon-carbon bond construction, the carbon-carbon bond activation can directly enable molecular editing (deletion, insertion, or modification of atoms or groups of atoms) and provide a more efficient and accurate synthetic strategy. However, the efficient and selective activation of unstrained carbon-carbon bonds is still one of the most challenging projects in organic synthesis. This review encompasses the strategies employed in recent years for carbon-carbon bond cleavage by explicitly focusing on their applicability in late-stage functionalization. This review expands the current discourse on carbon-carbon bond cleavage in late-stage functionalization reactions by providing a comprehensive overview of the selective cleavage of various types of carbon-carbon bonds. This includes C-C(sp), C-C(sp2), and C-C(sp3) single bonds; carbon-carbon double bonds; and carbon-carbon triple bonds, with a focus on catalysis by transition metals or organocatalysts. Additionally, specific topics, such as ring-opening processes involving carbon-carbon bond cleavage in three-, four-, five-, and six-membered rings, are discussed, and exemplar applications of these techniques are showcased in the context of complex bioactive molecules or drug discovery. This review aims to shed light on recent advancements in the field and propose potential avenues for future research in the realm of late-stage carbon-carbon bond functionalization.

8.
Chem Commun (Camb) ; 59(97): 14439-14442, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982295

RESUMEN

Manganese is a cheap and environmentally friendly metal on Earth. Herein, we report a manganese-promoted reductive cross-coupling using easily available and odorless disulfides as thiolating agents in an excellent 100% sulfur atom economy. The protocol featured a broad substrate scope, including various alkyl disulfides and excellent functional group compatibility, constructing diverse thioethers under simple conditions. Ultimately, thioethers can be prepared in gram-scale reactions and further transformed into structurally complex molecules.

9.
Transl Pediatr ; 12(4): 645-654, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37181013

RESUMEN

Background: At present, minimally invasive surgery is often used in paediatric patients as a day surgery to promote rapid post-operative recovery. Obstructive Sleep Apnea Syndrome (OSAS) Patients recovery in the hospital or at home after surgery may differ in terms of recovery quality and circadian rhythm status because of sleep disruption; however, this remains unknown. Pediatric patients usually unable to explain their feelings effectively, and objective indicators to measure recovery situation in different environments are promising. This study was conducted to compare the impact of in-hospital and at-home postoperative recovery quality (primary outcome) and circadian rhythm (as measured via the salivary melatonin level) (secondary outcome) in preschool-age patients. Methods: This was a cohort, non-randomized and exploratory observational study. A total of 61 children aged 4 to 6 years who were scheduled to receive adenotonsillectomy were recruited and assigned to recover either in the hospital (Hospital group) or at home (Home group) after surgery. There were no differences in the patient characteristics and perioperative variables between the Hospital and Home groups at baseline. They received the treatment and anesthesia in the same way. The patients' preoperative and up to 28 days post-surgery OSA-18 questionnaires were harvested. Moreover, their pre- and post-surgery salivary melatonin concentrations, body temperature, three-night postoperative sleep diaries, pain scales, emergence agitation, and other adverse effects were recorded. Results: There were no significant differences in the postoperative recovery quality, as assessed by the OSA-18 questionnaire, body temperature, sleep quality, pain scales, and other adverse events (such as respiratory depression, sinus bradycardia, sinus tachycardia, hypertension, hypotension, nausea, and vomiting) between the two groups. The preoperative morning saliva melatonin secretion was decreased in both groups on the first postoperative morning (P<0.05), while a significantly greater decrease was found in the Home group on postoperative day 1 (P<0.05) and day 2 (P<0.05). Conclusions: The postoperative recovery quality of preschool kids in the hospital is as good as at home based on OSA-18 evaluation scale. However, the clinical importance of the significant decrease in morning saliva melatonin levels with at-home postoperative recovery remains unknown and warrants further study.

10.
Nat Commun ; 14(1): 2987, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37225690

RESUMEN

The most widely used method for intracellular RNA fluorescence labeling is MS2 labeling, which generally relies on the use of multiple protein labels targeted to multiple RNA (MS2) hairpin structures installed on the RNA of interest (ROI). While effective and conveniently applied in cell biology labs, the protein labels add significant mass to the bound RNA, which potentially impacts steric accessibility and native RNA biology. We have previously demonstrated that internal, genetically encoded, uridine-rich internal loops (URILs) comprised of four contiguous UU pairs (8 nt) in RNA may be targeted with minimal structural perturbation by triplex hybridization with 1 kD bifacial peptide nucleic acids (bPNAs). A URIL-targeting strategy for RNA and DNA tracking would avoid the use of cumbersome protein fusion labels and minimize structural alterations to the RNA of interest. Here we show that URIL-targeting fluorogenic bPNA probes in cell media can penetrate cell membranes and effectively label RNAs and RNPs in fixed and live cells. This method, which we call fluorogenic U-rich internal loop (FLURIL) tagging, was internally validated through the use of RNAs bearing both URIL and MS2 labeling sites. Notably, a direct comparison of CRISPR-dCas labeled genomic loci in live U2OS cells revealed that FLURIL-tagged gRNA yielded loci with signal to background up to 7X greater than loci targeted by guide RNA modified with an array of eight MS2 hairpins. Together, these data show that FLURIL tagging provides a versatile scope of intracellular RNA and DNA tracking while maintaining a light molecular footprint and compatibility with existing methods.


Asunto(s)
Neoplasias de Células Escamosas , Neoplasias Cutáneas , Humanos , ADN/genética , Membrana Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN , Uridina
11.
J Org Chem ; 88(1): 690-700, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36485009

RESUMEN

A variety of tetrahydro-5H-indolo[2,3-b]quinolines were prepared in 40-97% yields through a copper(II)-catalyzed cascade reaction of aza-o-quinone methides generated in situ from 2-(chloromethyl)anilines and indoles. Experimental results showed that the reaction underwent double 1,4-additions and sequential intramolecular cyclization. The present method features broad substrate scope, good functional group tolerance, and easy gram scalable preparation of indolo[2,3-b]quinolines.


Asunto(s)
Indoles , Quinolinas , Indoles/química , Estructura Molecular , Cobre/química , Quinolinas/química , Catálisis
12.
Pathogens ; 11(12)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36558864

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a new coronavirus causing Coronavirus Disease 2019 (COVID-19), is a major topic of global human health concern. The Delta and Omicron variants have caused alarming responses worldwide due to their high transmission rates and a number of mutations. During a one-year follow-up (from June 2020 to June 2021), we included 114 patients with SARS-CoV-2 infection to study the long-term dynamics and the correlative factors of neutralizing antibodies (NAbs) in convalescent patients. The blood samples were collected at two detection time points (at 6 and 12 months after discharge). We evaluated the NAbs response of discharged patients by performing a micro-neutralization assay using a SARS-CoV-2 wild type. In addition, a total of 62 serum samples from discharged COVID-19 patients with Alpha, Beta, Delta, and Omicron variants of infection were enrolled to perform cross-neutralization tests using the original SARS-CoV-2 strain and VOCs variants (including Alpha, Beta, Gamma, Delta, and Omicron variants) and to assess the ability of NAbs against the SARS-CoV-2 variants. NAbs seroconversion occurred in 91.46% of patients (n = 82) in the first timepoint and in 89.29% of patients (n = 84) in the second detection point, and three kinds of NAbs kinetics curves were perceived. The NAbs levels in young patients had higher values than those in elder patients. The kinetics of disease duration was accompanied by an opposite trend in NAbs levels. Despite a declining NAbs response, NAbs activity was still detectable in a substantial proportion of recovered patients one year after discharge. Compared to the wild strain, the Omicron strain could lead to a 23.44-, 3.42-, 8.03-, and 2.57-fold reduction in neutralization capacity in "SAlpha", "SBeta", "SDelta", and "SOmicron", respectively, and the NAbs levels against the Omicron strain were significantly lower than those of the Beta and Delta variants. Remarkably, the NAbs activity of convalescent serum with Omicron strain infection was most obviously detectable against six SARS-CoV-2 strains in our study. The role of the vaccination history in NAbs levels further confirmed the previous study that reported vaccine-induced NAbs as the convincing protection mechanism against SARS-CoV-2. In conclusion, our findings highlighted the dynamics of the long-term immune responses after the disappearance of symptoms and revealed that NAbs levels varied among all types of convalescent patients with COVID-19 and that NAbs remained detectable for one year, which is reassuring in terms of protection against reinfection. Moreover, a moderate correlation between the duration of disease and Nabs titers was observed, whereas age was negatively correlated with Nabs titers. On the other hand, compared with other VOCs, the Omicron variant was able to escape the defenses of the immune system more significantly, and the convalescent serum infected with the Omicron variant played a critical part in protection against different SARS-CoV-2 variants. Recovery serum from individuals vaccinated with inactivated vaccine preceding infection with the Omicron strain had a high efficacy against the original strain and the VOCs variants, whereas the convalescent serum of persons vaccinated by inactivated vaccine prior to infection with the Delta variant was only potent against the wild-type strain.

13.
Chem Commun (Camb) ; 58(100): 13915-13918, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36445240

RESUMEN

Herein we reported the use of Earth-abundant iron as the catalytic metal in the presence of Mn to induce difluorobromoacetates to form carbon radicals, which reacted with trifluoromethyl olefins followed by ß-F elimination to generate the corresponding gem-difluoroolefins. The cross-electrophile coupling displayed excellent functional group tolerance and broad substrate scope under mild reductive conditions, affording a large number of polyfluorinated compounds, which could be further transformed to other valuable molecules.


Asunto(s)
Alquenos , Hierro , Catálisis , Alquenos/química , Hierro/química , Carbono/química
14.
Sci Adv ; 8(43): eabq1780, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36288320

RESUMEN

Histamine is an important monoamine neurotransmitter that regulates multiple physiological activities in both vertebrates and invertebrates. Clearance and recycling of histamine are critical for sustaining histaminergic transmission. However, unlike other monoamine neurotransmitters, a histamine-specific transporter capable of clearing histamine from the synaptic cleft has not been identified. Here, through an in vitro histamine uptake screening, we identified an epithelial glia-expressing transporter, HisT (Histamine Transporter), that specifically transports histamine into cells. HisT misexpression in both pre- and postsynaptic neurons revealed a critical in vivo role for HisT in histamine transport and synaptic transmission. Last, we generated null hist alleles and demonstrated key physiological roles of HisT in maintaining histamine pools and sustaining visual transmission when the de novo synthesis of histamine synthesis was reduced. Our work identifies the first transporter that specifically recycles histamine and further indicates that the histamine clearance pathway may involve both the uptake-1 and uptake-2 transport systems.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Histamina/metabolismo , Proteínas de Drosophila/metabolismo , Neuroglía/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Neurotransmisores/metabolismo
15.
Environ Sci Pollut Res Int ; 29(59): 89557-89569, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35852747

RESUMEN

Cadmium (Cd) pollution in farmland soils severely affects agricultural production safety, thereby threatening human health. Sedum plumbizincicola is a Cd and Zn hyperaccumulator commonly used for the phytoremediation of Cd-contaminated soil. This study was aimed to improve the remediation effect of S. plumbizincicola on Cd-contaminated farmland soil and provide a theoretical basis for the enhancement of endophytic bacteria in the repair of Cd-contaminated soil with S. plumbizincicola. Four kinds of endophytic bacteria, namely Buttiauxella, Pedobacter, Aeromonas eucrenophila, and Ralstonia pickettii, were used, and soil culture experiments and pot experiments were conducted to explore the effects of endophytic bacteria on soil Cd speciation and phytoremediation efficiency of Cd-contaminated farmland soils. Under the experimental conditions, after inoculation with endophytic bacteria, the soil pH was effectively reduced, content of weak acid-extracted Cd and oxidizable Cd increased, and content of reducible Cd and residual Cd decreased. Soil Cd activity was increased, and the availability coefficient of soil Cd increased by 1.15 to 6.41 units compared with that of the control (CK2). Compared with CK2, the biomass of S. plumbizincicola significantly increased by 23.23-55.12%; Cd content in shoots and roots of S. plumbizincicola increased by 29.63-46.01% and 11.42-84.47%, respectively; and bioconcentration factor was 2.13 to 2.72 times that of CK2. The Cd removal rate of S. plumbizincicola monocropping was 48.25%. When S. plumbizincicola was planted with inoculating endophytic bacteria, the Cd removal rate in the soil reached 61.18-71.49%, which was significantly higher than that of CK2 (p < 0.05). The treatment with endophytic bacteria activated soil Cd, promoted the growth of S. plumbizincicola, increased its Cd content, and enhanced the phytoremediation of Cd-contaminated farmland soil. Therefore, endophytic bacteria can be used to improve the remediation efficiency of S. plumbizincicola in Cd-contaminated farmland soils.


Asunto(s)
Sedum , Contaminantes del Suelo , Humanos , Cadmio/análisis , Suelo , Granjas , Contaminantes del Suelo/análisis , Zinc/química , Biodegradación Ambiental , Bacterias
16.
Front Oncol ; 12: 859621, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35372041

RESUMEN

Objective: To clarify the function and mechanisms of sevoflurane (Sev) on ferroptosis in glioma cells. Methods: Different concentrations of Sev were used to treat glioma cells U87 and U251. Ferroptosis inducer Erastin was used to incubate glioma cells combined with Sev and ATF4 siRNA transfection treatment. CCK-8 assay and colorimetric assay were performed to analyze cell viability and Fe+ concentration, respectively. The releases of reactive oxygen species (ROS) were determined by flow cytometry analysis. Transcriptional sequencing was used to screen the differential genes affected by Sev in U251 cells. The mRNA and protein expression of ferroptosis-associated genes was detected by qRT-PCR and Western blotting. Results: Sev could suppress cell viability, increase ROS levels and Fe+ concentration, downregulate the protein expression levels of GPX4, and upregulate transferrin, ferritin, and Beclin-1 in a dose-dependent manner in U87 and U251 cells. The expression of ferroptosis and mitophagy-related gene activating transcription factor 4 (ATF4) was identified to be enhanced by Sev analyzed by transcriptional sequencing. ChaC glutathione-specific gamma-glutamylcyclotransferase 1 (CHAC1), which is involved in ferroptosis, is a downstream gene of ATF4. Inhibition of ATF4 could interrupt the expression of CHAC1 induced by Sev in U87 and U251 cells. Ferroptosis inducer Erastin treatment obviously inhibited the cell viability, elevated the Fe2+ concentration, and promoted ROS generation in U87 and U251 cells. The protein level of ATF4 and CHAC1 was increased in Erastin-treated U87 and U251 cells. Moreover, the interruption of Sev-induced ferroptosis and CHAC1 activating induced by ATF4 suppression could be reversed by Erastin. Conclusions: In summary, this study suggested that Sev exposure-induced ferroptosis by the ATF4-CHAC1 pathway in glioma cells.

17.
BMC Gastroenterol ; 22(1): 61, 2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35151250

RESUMEN

BACKGROUND: The purpose of this study was to investigate the diagnosis and treatment experience of traumatic duodenal ruptures in children. METHODS: Clinical data were collected from four children suffering from a traumatic duodenal rupture who were admitted to and treated by our hospital from January 2012 to December 2020. The early diagnosis and treatment, surgical plan, postoperative management, complications, and prognosis of each child were analyzed. The key points and difficulties of the diagnosis and treatment for this type of injury are summarized. RESULTS: One child had an extreme infection caused by drug-resistant bacteria, which resulted in severe complications, including wound infection, dehiscence, and an intestinal fistula. One child developed an anastomotic stenosis after the duodenostomy, which improved following an endoscopic balloon dilatation. The other two children had no relevant complications after their operations. All four patients were cured and discharged from hospital. The average hospital stay was 48.25 ± 26.89 days. The follow-up period was 0.5 to 1 year. No other complications occurred, and all children had a positive prognosis. CONCLUSIONS: The early identification of a duodenal rupture is essential, and surgical exploration should be carried out proactively. The principles of damage-control surgery should be followed as much as possible during the operation. Multidisciplinary cooperation and management are both important to reduce the occurrence of postoperative complications and improve cure rates.


Asunto(s)
Enfermedades Duodenales , Anastomosis Quirúrgica , Niño , Dilatación , Duodeno/cirugía , Humanos , Complicaciones Posoperatorias , Estudios Retrospectivos
18.
Chemistry ; 28(2): e202103616, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34693570

RESUMEN

We hypothesize that programmable hybridization to noncanonical nucleic acid motifs may be achieved by macromolecular display of binders to individual noncanonical pairs (NCPs). As each recognition element may individually have weak binding to an NCP, we developed a semi-rational approach to detect low affinity interactions between selected nitrogenous bases and noncanonical sites in duplex DNA and RNA. A set of fluorogenic probes was synthesized by coupling abiotic (triazines, pyrimidines) and native RNA bases to thiazole orange (TO) dye. This probe library was screened against duplex nucleic acid substrates bearing single abasic, single NCP, and tandem NCP sites. Probe engagement with NCP sites was reported by 100-1000× fluorescence enhancement over background. Binding is strongly context-dependent, reflective of both molecular recognition and stability: less stable motifs are more likely to bind a synthetic probe. Further, DNA and RNA substrates exhibit entirely different abasic and single NCP binding profiles. While probe binding in the abasic and single NCP screens was monotonous, much richer binding profiles were observed with the screen of tandem NCP sites in RNA, in part due to increased steric accessibility. In addition to known binding interactions between the triazine melamine (M) and T/U sites, the NCP screens identified new targeting elements for pyrimidine-rich motifs in single NCPs and 2×2 internal bulges. We anticipate that semi-rational approaches of this type will lead to programmable noncanonical hybridization strategies at the macromolecular level.


Asunto(s)
Ácidos Nucleicos , ARN , Sitios de Unión , ADN , Sondas de ADN , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Nucleótidos
19.
Biosens Bioelectron ; 198: 113857, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34894625

RESUMEN

The increasing prevalence of SARS-CoV-2 variants with spike mutations has raised concerns owing to higher transmission rates, disease severity, and escape from neutralizing antibodies. Rapid and accurate detection of SARS-CoV-2 variants provides crucial information concerning the outbreaks of SARS-CoV-2 variants and possible lines of transmission. This information is vital for infection prevention and control. We used a Cas12a-based RT-PCR combined with CRISPR on-site rapid detection system (RT-CORDS) platform to detect the key mutations in SARS-CoV-2 variants, such as 69/70 deletion, N501Y, and D614G. We used type-specific CRISPR RNAs (crRNAs) to identify wild-type (crRNA-W) and mutant (crRNA-M) sequences of SARS-CoV-2. We successfully differentiated mutant variants from wild-type SARS-CoV-2 with a sensitivity of 10-17 M (approximately 6 copies/µL). The assay took just 10 min with the Cas12a/crRNA reaction after a simple RT-PCR using a fluorescence reporting system. In addition, a sensitivity of 10-16 M could be achieved when lateral flow strips were used as readouts. The accuracy of RT-CORDS for SARS-CoV-2 variant detection was 100% consistent with the sequencing data. In conclusion, using the RT-CORDS platform, we accurately, sensitively, specifically, and rapidly detected SARS-CoV-2 variants. This method may be used in clinical diagnosis.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Sistemas CRISPR-Cas , Humanos , Mutación , SARS-CoV-2
20.
Oxid Med Cell Longev ; 2022: 1030238, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589681

RESUMEN

The effective remission of acute respiratory distress syndrome- (ARDS-) caused pulmonary fibrosis determines the recovery of lung function. Inositol can relieve lung injuries induced by ARDS. However, the mechanism of myo-inositol in the development of ARDS is unclear, which limits its use in the clinic. We explored the role and mechanism of myo-inositol in the development of ARDS by using an in vitro lipopolysaccharide- (LPS-) established alveolar epithelial cell inflammation model and an in vivo ARDS mouse model. Our results showed that inositol can alleviate the progression of pulmonary fibrosis. More significantly, we found that inositol can induce autophagy to inhibit the progression pulmonary fibrosis caused by ARDS. In order to explore the core regulators of ARDS affected by inositol, mRNA-seq sequencing was performed. Those results showed that transcription factor HIF-1α can regulate the expression of SLUG, which in turn can regulate the key gene E-Cadherin involved in cell epithelial-mesenchymal transition (EMT) as well as N-cadherin expression, and both were regulated by inositol. Our results suggest that inositol activates autophagy to inhibit EMT progression induced by the HIF-1α/SLUG signaling pathway in ARDS, and thereby alleviates pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Síndrome de Dificultad Respiratoria , Ratones , Animales , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/inducido químicamente , Inositol/efectos adversos , Transducción de Señal , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Cadherinas/metabolismo , Autofagia , Transición Epitelial-Mesenquimal , Lipopolisacáridos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...