Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunity ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38733997

RESUMEN

Several interleukin-1 (IL-1) family members, including IL-1ß and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.

2.
Proc Natl Acad Sci U S A ; 120(26): e2306564120, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37339228

RESUMEN

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from VH, D, and JH gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a JH-based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to JHs to form a DJH-RC. Igh has a provocative number and organization of CTCF-binding elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the VH and D/JH domains, over 100 CBEs across the VH domain convergent to CBE1, and 10 clustered 3'Igh-CBEs convergent to CBE2 and VH CBEs. IGCR1 CBEs segregate D/JH and VH domains by impeding loop extrusion-mediated RAG-scanning. Downregulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJH-RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3'Igh-CBEs in regulating RAG-scanning and elucidate the mechanism of the ordered transition from D-to-JH to VH-to-DJH recombination, we tested effects of inverting and/or deleting IGCR1 or 3'Igh-CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3'Igh-CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL downregulation mechanism in progenitor-B cells as opposed to a strict developmental switch.


Asunto(s)
Secuencias Reguladoras de Ácidos Nucleicos , Recombinación V(D)J , Animales , Ratones , Recombinación V(D)J/genética , Región Variable de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/metabolismo , Células Precursoras de Linfocitos B/metabolismo , Cromatina/metabolismo
3.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163018

RESUMEN

Immunoglobulin heavy chain variable region exons are assembled in progenitor-B cells, from V H , D, and J H gene segments located in separate clusters across the Igh locus. RAG endonuclease initiates V(D)J recombination from a J H -based recombination center (RC). Cohesin-mediated extrusion of upstream chromatin past RC-bound RAG presents Ds for joining to J H s to form a DJ H -RC. Igh has a provocative number and organization of CTCF-binding-elements (CBEs) that can impede loop extrusion. Thus, Igh has two divergently oriented CBEs (CBE1 and CBE2) in the IGCR1 element between the V H and D/J H domains, over 100 CBEs across the V H domain convergent to CBE1, and 10 clustered 3' Igh -CBEs convergent to CBE2 and V H CBEs. IGCR1 CBEs segregate D/J H and V H domains by impeding loop extrusion-mediated RAG-scanning. Down-regulation of WAPL, a cohesin unloader, in progenitor-B cells neutralizes CBEs, allowing DJ H -RC-bound RAG to scan the VH domain and perform VH-to-DJH rearrangements. To elucidate potential roles of IGCR1-based CBEs and 3' Igh -CBEs in regulating RAG-scanning and elucidate the mechanism of the "ordered" transition from D-to-J H to V H -to-DJ H recombination, we tested effects of deleting or inverting IGCR1 or 3' Igh -CBEs in mice and/or progenitor-B cell lines. These studies revealed that normal IGCR1 CBE orientation augments RAG-scanning impediment activity and suggest that 3' Igh -CBEs reinforce ability of the RC to function as a dynamic loop extrusion impediment to promote optimal RAG scanning activity. Finally, our findings indicate that ordered V(D)J recombination can be explained by a gradual WAPL down-regulation mechanism in progenitor B cells as opposed to a strict developmental switch. SIGNIFICANCE STATEMENT: To counteract diverse pathogens, vertebrates evolved adaptive immunity to generate diverse antibody repertoires through a B lymphocyte-specific somatic gene rearrangement process termed V(D)J recombination. Tight regulation of the V(D)J recombination process is vital to generating antibody diversity and preventing off-target activities that can predispose the oncogenic translocations. Recent studies have demonstrated V(D)J rearrangement is driven by cohesin-mediated chromatin loop extrusion, a process that establishes genomic loop domains by extruding chromatin, predominantly, between convergently-oriented CTCF looping factor-binding elements (CBEs). By deleting and inverting CBEs within a critical antibody heavy chain gene locus developmental control region and a loop extrusion chromatin-anchor at the downstream end of this locus, we reveal how these elements developmentally contribute to generation of diverse antibody repertoires.

4.
Nature ; 612(7938): 156-161, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36228656

RESUMEN

The B cell antigen receptor (BCR) is composed of a membrane-bound class M, D, G, E or A immunoglobulin for antigen recognition1-3 and a disulfide-linked Igα (also known as CD79A) and Igß (also known as CD79B) heterodimer (Igα/ß) that functions as the signalling entity through intracellular immunoreceptor tyrosine-based activation motifs (ITAMs)4,5. The organizing principle of the BCR remains unknown. Here we report cryo-electron microscopy structures of mouse full-length IgM BCR and its Fab-deleted form. At the ectodomain (ECD), the Igα/ß heterodimer mainly uses Igα to associate with Cµ3 and Cµ4 domains of one heavy chain (µHC) while leaving the other heavy chain (µHC') unbound. The transmembrane domain (TMD) helices of µHC and µHC' interact with those of the Igα/ß heterodimer to form a tight four-helix bundle. The asymmetry at the TMD prevents the recruitment of two Igα/ß heterodimers. Notably, the connecting peptide between the ECD and TMD of µHC intervenes in between those of Igα and Igß to guide TMD assembly through charge complementarity. Weaker but distinct density for the Igß ITAM nestles next to the TMD, suggesting potential autoinhibition of ITAM phosphorylation. Interfacial analyses suggest that all BCR classes utilize a general organizational architecture. Our studies provide a structural platform for understanding B cell signalling and designing rational therapies against BCR-mediated diseases.


Asunto(s)
Microscopía por Crioelectrón , Receptores de Antígenos de Linfocitos B , Animales , Ratones , Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/biosíntesis , Receptores de Antígenos de Linfocitos B/química , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/ultraestructura , Transducción de Señal , Fragmentos Fab de Inmunoglobulinas , Dominios Proteicos , Fosforilación
5.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006647

RESUMEN

Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/genética , Células Precursoras de Linfocitos B/metabolismo , Recombinación V(D)J , Animales , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fase G1/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Autoantígeno Ku/metabolismo , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Células Precursoras de Linfocitos B/citología
6.
Nat Protoc ; 15(10): 3154-3181, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778838

RESUMEN

We provide a protocol for generating forebrain structures in vivo from mouse embryonic stem cells (ESCs) via neural blastocyst complementation (NBC). We developed this protocol for studies of development and function of specific forebrain regions, including the cerebral cortex and hippocampus. We describe a complete workflow, from methods for modifying a given genomic locus in ESCs via CRISPR-Cas9-mediated editing to the generation of mouse chimeras with ESC-reconstituted forebrain regions that can be directly analyzed. The procedure begins with genetic editing of mouse ESCs via CRISPR-Cas9, which can be accomplished in ~4-8 weeks. We provide protocols to achieve fluorescent labeling of ESCs in ~2-3 weeks, which allows tracing of the injected, ESC-derived donor cells in chimeras generated via NBC. Once modified ESCs are ready, NBC chimeras are generated in ~3 weeks via injection of ESCs into genetically programmed blastocysts that are subsequently transferred into pseudo-pregnant fosters. Our in vivo brain organogenesis platform is efficient, allowing functional and systematic analysis of genes and other genomic factors in as little as 3 months, in the context of a whole organism.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/embriología , Células Madre Embrionarias de Ratones/fisiología , Animales , Blastocisto , Diferenciación Celular , Quimera , Femenino , Masculino , Ratones , Organogénesis , Fenotipo
7.
Nature ; 573(7775): 600-604, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511698

RESUMEN

The RAG endonuclease initiates Igh V(D)J assembly in B cell progenitors by joining D segments to JH segments, before joining upstream VH segments to DJH intermediates1. In mouse progenitor B cells, the CTCF-binding element (CBE)-anchored chromatin loop domain2 at the 3' end of Igh contains an internal subdomain that spans the 5' CBE anchor (IGCR1)3, the DH segments, and a RAG-bound recombination centre (RC)4. The RC comprises the JH-proximal D segment (DQ52), four JH segments, and the intronic enhancer (iEµ)5. Robust RAG-mediated cleavage is restricted to paired V(D)J segments flanked by complementary recombination signal sequences (12RSS and 23RSS)6. D segments are flanked downstream and upstream by 12RSSs that mediate deletional joining with convergently oriented JH-23RSSs and VH-23RSSs, respectively6. Despite 12/23 compatibility, inversional D-to-JH joining via upstream D-12RSSs is rare7,8. Plasmid-based assays have attributed the lack of inversional D-to-JH joining to sequence-based preference for downstream D-12RSSs9, as opposed to putative linear scanning mechanisms10,11. As RAG linearly scans convergent CBE-anchored chromatin loops4,12-14, potentially formed by cohesin-mediated loop extrusion15-18, we revisited its scanning role. Here we show that the chromosomal orientation of JH-23RSS programs RC-bound RAG to linearly scan upstream chromatin in the 3' Igh subdomain for convergently oriented D-12RSSs and, thereby, to mediate deletional joining of all D segments except RC-based DQ52, which joins by a diffusion-related mechanism. In a DQ52-based RC, formed in the absence of JH segments, RAG bound by the downstream DQ52-RSS scans the downstream constant region exon-containing 3' Igh subdomain, in which scanning can be impeded by targeted binding of nuclease-dead Cas9, by transcription through repetitive Igh switch sequences, and by the 3' Igh CBE-based loop anchor. Each scanning impediment focally increases RAG activity on potential substrate sequences within the impeded region. High-resolution mapping of chromatin interactions in the RC reveals that such focal RAG targeting is associated with corresponding impediments to the loop extrusion process that drives chromatin past RC-bound RAG.


Asunto(s)
Cromatina/metabolismo , Recombinación V(D)J/fisiología , Animales , Línea Celular , Endonucleasas/metabolismo , Ratones Endogámicos C57BL , Células Precursoras de Linfocitos B/metabolismo
8.
Nature ; 563(7729): 126-130, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305734

RESUMEN

Genetically modified mice are commonly generated by the microinjection of pluripotent embryonic stem (ES) cells into wild-type host blastocysts1, producing chimeric progeny that require breeding for germline transmission and homozygosity of modified alleles. As an alternative approach and to facilitate studies of the immune system, we previously developed RAG2-deficient blastocyst complementation2. Because RAG2-deficient mice cannot undergo V(D)J recombination, they do not develop B or T lineage cells beyond the progenitor stage2: injecting RAG2-sufficient donor ES cells into RAG2-deficient blastocysts generates somatic chimaeras in which all mature lymphocytes derive from donor ES cells. This enables analysis, in mature lymphocytes, of the functions of genes that are required more generally for mouse development3. Blastocyst complementation has been extended to pancreas organogenesis4, and used to generate several other tissues or organs5-10, but an equivalent approach for brain organogenesis has not yet been achieved. Here we describe neural blastocyst complementation (NBC), which can be used to study the development and function of specific forebrain regions. NBC involves targeted ablation, mediated by diphtheria toxin subunit A, of host-derived dorsal telencephalic progenitors during development. This ablation creates a vacant forebrain niche in host embryos that results in agenesis of the cerebral cortex and hippocampus. Injection of donor ES cells into blastocysts with forebrain-specific targeting of diphtheria toxin subunit A enables donor-derived dorsal telencephalic progenitors to populate the vacant niche in the host embryos, giving rise to neocortices and hippocampi that are morphologically and neurologically normal with respect to learning and memory formation. Moreover, doublecortin-deficient ES cells-generated via a CRISPR-Cas9 approach-produced NBC chimaeras that faithfully recapitulated the phenotype of conventional, germline doublecortin-deficient mice. We conclude that NBC is a rapid and efficient approach to generate complex mouse models for studying forebrain functions; this approach could more broadly facilitate organogenesis based on blastocyst complementation.


Asunto(s)
Blastocisto/citología , Blastocisto/metabolismo , Organogénesis , Prosencéfalo/citología , Prosencéfalo/embriología , Animales , Quimera/embriología , Quimera/genética , Proteínas de Unión al ADN/deficiencia , Proteínas de Dominio Doblecortina , Femenino , Prueba de Complementación Genética , Células Germinativas/metabolismo , Hipocampo/anatomía & histología , Hipocampo/citología , Hipocampo/embriología , Hipocampo/fisiología , Masculino , Ratones , Ratones Transgénicos , Proteínas Asociadas a Microtúbulos/deficiencia , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Neocórtex/anatomía & histología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/fisiología , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/deficiencia , Fenotipo , Prosencéfalo/anatomía & histología , Prosencéfalo/fisiología
9.
ACS Chem Neurosci ; 9(12): 3128-3136, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30067906

RESUMEN

Abnormal deposition of brain amyloid is a major hallmark of Alzheimer's disease (AD). The toxic extracellular amyloid plaques originating from the aberrant aggregation of beta-amyloid (Aß) protein are considered to be the major cause of clinical deficits such as memory loss and cognitive impairment. Two-photon excited fluorescence (TPEF) microscopy provides high spatial resolution, minimal invasiveness, and long-term monitoring capability. TPEF imaging of amyloid plaques in AD transgenic mice models has greatly facilitated studies of the AD pathological mechanism. However, the imaging of deep cortical layers is still hampered by the conventional amyloid probes with short excitation/emission wavelength. In this work, we report that a near-infrared (NIR) probe, named CRANAD-3, is far superior for deep in vivo TPEF imaging of brain amyloid in comparison with the commonly used short-wavelength probe. Our findings show that the major interference for TPEF signal of the NIR probe is from the autofluorescence of lipofuscin, the "aging-pigment" in the brain. To eliminate the interference, we characterized the lipofuscin fluorescence in the aged brains of AD mice and found that it has unique broad emission and short lifetime. The lipofuscin signal can be clearly separated from the fluorescence of CRANAD-3 and fluorescent protein via a ratio-based unmixing method. Our results demonstrate the great advantages of NIR probes for in vivo deep-tissue imaging of amyloid plaques in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Encéfalo/patología , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Placa Amiloide/patología , Animales , Artefactos , Modelos Animales de Enfermedad , Colorantes Fluorescentes , Microscopía Intravital , Lipofuscina , Ratones , Procesamiento de Señales Asistido por Computador
10.
Proc Natl Acad Sci U S A ; 114(33): E6992-E7001, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28760951

RESUMEN

The experience-dependent modulation of brain circuitry depends on dynamic changes in synaptic connections that are guided by neuronal activity. In particular, postsynaptic maturation requires changes in dendritic spine morphology, the targeting of postsynaptic proteins, and the insertion of synaptic neurotransmitter receptors. Thus, it is critical to understand how neuronal activity controls postsynaptic maturation. Here we report that the scaffold protein liprinα1 and its phosphorylation by cyclin-dependent kinase 5 (Cdk5) are critical for the maturation of excitatory synapses through regulation of the synaptic localization of the major postsynaptic organizer postsynaptic density (PSD)-95. Whereas Cdk5 phosphorylates liprinα1 at Thr701, this phosphorylation decreases in neurons in response to neuronal activity. Blockade of liprinα1 phosphorylation enhances the structural and functional maturation of excitatory synapses. Nanoscale superresolution imaging reveals that inhibition of liprinα1 phosphorylation increases the colocalization of liprinα1 with PSD-95. Furthermore, disruption of liprinα1 phosphorylation by a small interfering peptide, siLIP, promotes the synaptic localization of PSD-95 and enhances synaptic strength in vivo. Our findings collectively demonstrate that the Cdk5-dependent phosphorylation of liprinα1 is important for the postsynaptic organization during activity-dependent synapse development.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Dendritas/metabolismo , Proteínas/metabolismo , Sinapsis/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Homólogo 4 de la Proteína Discs Large/metabolismo , Ratones , Fosforilación/fisiología , Ratas
11.
Nat Commun ; 7: 13282, 2016 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-27796283

RESUMEN

Dendritic spine stabilization depends on afferent synaptic input and requires changes in actin cytoskeleton dynamics and protein synthesis. However, the underlying molecular mechanism remains unclear. Here we report the identification of 'calmodulin kinase-like vesicle-associated' (CaMKv), a pseudokinase of the CaMK family with unknown function, as a synaptic protein crucial for dendritic spine maintenance. CaMKv mRNA localizes at dendrites, and its protein synthesis is regulated by neuronal activity. CaMKv function is inhibited upon phosphorylation by cyclin-dependent kinase 5 (Cdk5) at Thr345. Furthermore, CaMKv knockdown in mouse hippocampal CA1 pyramidal neurons impairs synaptic transmission and plasticity in vivo, resulting in hyperactivity and spatial memory impairment. These findings collectively indicate that the precise regulation of CaMKv through activity-dependent synthesis and post-translational phosphorylation is critical for dendritic spine maintenance, revealing an unusual signalling pathway in the regulation of synaptic transmission and brain function that involves a pseudokinase.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Espinas Dendríticas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Citoesqueleto/metabolismo , Dendritas/metabolismo , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mutación , Neuronas/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Transducción de Señal , Sinapsis , Transmisión Sináptica , Sinaptosomas/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
12.
J Neurosci ; 35(45): 15127-34, 2015 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-26558783

RESUMEN

The proper growth and arborization of dendrites in response to sensory experience are essential for neural connectivity and information processing in the brain. Although neuronal activity is important for sculpting dendrite morphology, the underlying molecular mechanisms are not well understood. Here, we report that cyclin-dependent kinase 5 (Cdk5)-mediated transcriptional regulation is a key mechanism that controls activity-dependent dendrite development in cultured rat neurons. During membrane depolarization, Cdk5 accumulates in the nucleus to regulate the expression of a subset of genes, including that of the neurotrophin brain-derived neurotrophic factor, for subsequent dendritic growth. Furthermore, Cdk5 function is mediated through the phosphorylation of methyl-CpG-binding protein 2, a key transcriptional repressor that is mutated in the mental disorder Rett syndrome. These findings collectively suggest that the nuclear import of Cdk5 is crucial for activity-dependent dendrite development by regulating neuronal gene transcription during neural development. SIGNIFICANCE STATEMENT: Neural activity directs dendrite development through the regulation of gene transcription. However, how molecular signals link extracellular stimuli to the transcriptional program in the nucleus remains unclear. Here, we demonstrate that neuronal activity stimulates the translocation of the kinase Cdk5 from the cytoplasmic compartment into the nucleus; furthermore, the nuclear localization of Cdk5 is required for dendrite development in cultured neurons. Genome-wide transcriptome analysis shows that Cdk5 deficiency specifically disrupts activity-dependent gene transcription of bdnf. The action of Cdk5 is mediated through the modulation of the transcriptional repressor methyl-CpG-binding protein 2. Therefore, this study elucidates the role of nuclear Cdk5 in the regulation of activity-dependent gene transcription and dendritic growth.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/fisiología , Dendritas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corteza Visual/crecimiento & desarrollo , Corteza Visual/metabolismo , Animales , Células Cultivadas , Dendritas/genética , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Transgénicos , Ratas
13.
PLoS One ; 10(7): e0133115, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26204446

RESUMEN

During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin ("axis inhibitor") is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein-protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization.


Asunto(s)
Proteína Axina/fisiología , Espinas Dendríticas/ultraestructura , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/fisiología , Animales , Proteína Axina/genética , Región CA1 Hipocampal/citología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Núcleo Celular/química , Células Cultivadas , Citosol/química , Compuestos Heterocíclicos con 3 Anillos/farmacología , Ratones , Morfogénesis , Neurogénesis , Densidad Postsináptica/química , Interferencia de ARN , ARN Interferente Pequeño/genética , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Sinaptosomas/metabolismo
14.
J Biol Chem ; 290(23): 14637-46, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25903132

RESUMEN

The maturation and maintenance of dendritic spines depends on neuronal activity and protein synthesis. One potential mechanism involves mammalian target of rapamycin, which promotes protein synthesis through phosphorylation of eIF4E-binding protein and p70 ribosomal S6 kinase 1 (S6K). Upon extracellular stimulation, mammalian target of rapamycin phosphorylates S6K at Thr-389. S6K also undergoes phosphorylation at other sites, including four serine residues in the autoinhibitory domain. Despite extensive biochemical studies, the importance of phosphorylation in the autoinhibitory domain in S6K function remains unresolved, and its role has not been explored in the cellular context. Here we demonstrated that S6K in neuron was phosphorylated at Ser-411 within the autoinhibitory domain by cyclin-dependent kinase 5. Ser-411 phosphorylation was regulated by neuronal activity and brain-derived neurotrophic factor (BDNF). Knockdown of S6K in hippocampal neurons by RNAi led to loss of dendritic spines, an effect that mimics neuronal activity blockade by tetrodotoxin. Notably, coexpression of wild type S6K, but not the phospho-deficient S411A mutant, could rescue the spine defects. These findings reveal the importance of cyclin-dependent kinase 5-mediated phosphorylation of S6K at Ser-411 in spine morphogenesis driven by BDNF and neuronal activity.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Espinas Dendríticas/ultraestructura , Neuronas/citología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Espinas Dendríticas/metabolismo , Neuronas/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley , Proteínas Quinasas S6 Ribosómicas 70-kDa/análisis
15.
Nat Neurosci ; 15(11): 1506-15, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23064382

RESUMEN

The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB participate in diverse neuronal functions, including activity-dependent synaptic plasticity that is crucial for learning and memory. On binding to BDNF, TrkB is not only autophosphorylated at tyrosine residues but also undergoes serine phosphorylation at S478 by the serine/threonine kinase cyclin-dependent kinase 5 (Cdk5). However, the in vivo function of this serine phosphorylation remains unknown. We generated knock-in mice lacking this serine phosphorylation (Trkb(S478A/S478A) mice) and found that the TrkB phosphorylation-deficient mice displayed impaired spatial memory and compromised hippocampal long-term potentiation (LTP). S478 phosphorylation of TrkB regulates its interaction with the Rac1-specific guanine nucleotide exchange factor TIAM1, leading to activation of Rac1 and phosphorylation of S6 ribosomal protein during activity-dependent dendritic spine remodeling. These findings reveal the importance of Cdk5-mediated S478 phosphorylation of TrkB in activity-dependent structural plasticity, which is crucial for LTP and spatial memory formation.


Asunto(s)
Quinasa 5 Dependiente de la Ciclina/metabolismo , Potenciación a Largo Plazo/fisiología , Memoria/fisiología , Receptor trkB/metabolismo , Conducta Espacial/fisiología , Análisis de Varianza , Animales , Encéfalo/citología , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/deficiencia , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/metabolismo , Homólogo 4 de la Proteína Discs Large , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Guanilato-Quinasas/metabolismo , Humanos , Inmunoprecipitación/métodos , Técnicas In Vitro , Potenciación a Largo Plazo/efectos de los fármacos , Potenciación a Largo Plazo/genética , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/ultraestructura , Fosforilación/genética , Quinoxalinas/farmacología , Ratas , Receptor trkB/genética , Proteínas Quinasas S6 Ribosómicas , Serina/metabolismo , Tinción con Nitrato de Plata , Sinaptofisina/metabolismo , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Factores de Tiempo , Transfección , Proteína de Unión al GTP rac1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...