Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37108752

RESUMEN

Thidiazuron (TDZ) is a widely used chemical defoliant in cotton and can stimulate the production of ethylene in leaves, which is believed to be the key factor in inducing leaf abscission. Ethephon (Eth) can also stimulate ethylene production in leaves, but it is less effective in promoting leaf shedding. In this study, the enzyme-linked immunosorbent assays (ELISA) and RNA-seq were used to determine specific changes at hormonal levels as well as transcriptomic mechanisms induced by TDZ compared with Eth. The TDZ significantly reduced the levels of auxin and cytokinin in cotton leaves, but no considerable changes were observed for Eth. In addition, TDZ specifically increased the levels of brassinosteroids and jasmonic acid in the leaves. A total of 13 764 differentially expressed genes that specifically responded to TDZ were identified by RNA-seq. The analysis of KEGG functional categories suggested that the synthesis, metabolism, and signal transduction of auxin, cytokinin, and brassinosteroid were all involved in the TDZ-induced abscission of cotton leaves. Eight auxin transport genes (GhPIN1-c_D, GhPIN3_D, GhPIN8_A, GhABCB19-b_A, GhABCB19-b_D, GhABCB2-b_D, GhLAX6_A, and GhLAX7_D) specifically responded to TDZ. The pro35S::GhPIN3a::YFP transgenic plants showed lower defoliation than the wild type treated with TDZ, and YFP fluorescence in leaves was almost extinguished after treatment with TDZ rather than Eth. This provides direct evidence that GhPIN3a is involved in the leaf abscission induced by TDZ. We found that 959 transcription factors (TFs) specifically responded to TDZ, and a co-expression network analysis (WGCNA) showed five hub TFs (GhNAC72, GhWRKY51, GhWRKY70, GhWRKY50, and GhHSF24) during chemical defoliation with TDZ. Our work sheds light on the molecular basis of TDZ-induced leaf abscission in cotton.


Asunto(s)
Etilenos , Transcriptoma , Etilenos/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo
2.
Int J Mol Sci ; 23(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35269837

RESUMEN

Thidiazuron (TDZ) is widely used as a defoliant to induce leaf abscission in cotton. However, the underlying molecular mechanism is still unclear. In this study, RNA-seq and enzyme-linked immunosorbent assays (ELISA) were performed to reveal the dynamic transcriptome profiling and the change of endogenous phytohormones upon TDZ treatment in leaf, petiole, and abscission zone (AZ). We found that TDZ induced the gene expression of ethylene biosynthesis and signal, and promoted ethylene accumulation earlier in leaf than that in AZ. While TDZ down-regulated indole-3-acetic acid (IAA) biosynthesis genes mainly in leaf and IAA signal and transport genes. Furthermore, the IAA content reduced more sharply in the leaf than that in AZ to change the auxin gradient for abscission. TDZ suppressed CTK biosynthesis genes and induced CTK metabolic genes to reduce the IPA accumulation for the reduction of ethylene sensitivity. Furthermore, TDZ regulated the gene expression of abscisic acid (ABA) biosynthesis and signal and induced ABA accumulation between 12-48 h, which could up-regulate ABA response factor genes and inhibit IAA transporter genes. Our data suggest that TDZ orchestrates metabolism and signal of ethylene, auxin, and cytokinin, and also the transport of auxin in leaf, petiole, and AZ, to control leaf abscission.


Asunto(s)
Citocininas , Regulación de la Expresión Génica de las Plantas , Etilenos , Ácidos Indolacéticos/metabolismo , Compuestos de Fenilurea , Hojas de la Planta/metabolismo , Tiadiazoles
3.
Materials (Basel) ; 12(9)2019 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086062

RESUMEN

The properties of materials directly affect the performance of the sealing structures, among which the rubber O-ring seal is one of the most commonly used. In addition, the performance of the O-ring seal is often influenced by the randomness in structure and working conditions, which greatly reduce the reliability of the sealing structure. This paper proposes a reliability-based method to analyze the influence of the randomness in rubber material parameters on the sealing performance of the O-ring. Based on the failure mechanism of the O-ring seal, the stochastic characteristics of the parameters in O-rings are determined through experiments, and the influences of these parameters on the reliability are subsequently analyzed. Moreover, the working conditions are also taken into account to analyze their influence on the performance and reliability of the O-ring seal. The proposed method provides easy access to estimate the reliability of the rubber O-ring seal considering the uncertainty in structure and operational conditions. It is revealed that the material and geometric parameters had greater influence on the reliability of the rubber O-ring.

4.
Materials (Basel) ; 11(4)2018 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-29584695

RESUMEN

In the degradation process, the randomness and multiplicity of variables are difficult to describe by mathematical models. However, they are common in engineering and cannot be neglected, so it is necessary to study this issue in depth. In this paper, the copper bending pipe in seawater piping systems is taken as the analysis object, and the time-variant reliability is calculated by solving the interference of limit strength and maximum stress. We did degradation experiments and tensile experiments on copper material, and obtained the limit strength at each time. In addition, degradation experiments on copper bending pipe were done and the thickness at each time has been obtained, then the response of maximum stress was calculated by simulation. Further, with the help of one kind of Monte Carlo method we propose, the time-variant reliability of copper bending pipe was calculated based on the stochastic degradation process and interference theory. Compared with traditional methods and verified by maintenance records, the results show that the time-variant reliability model based on the stochastic degradation process proposed in this paper has better applicability in the reliability analysis, and it can be more convenient and accurate to predict the replacement cycle of copper bending pipe under seawater-active corrosion.

5.
Materials (Basel) ; 10(10)2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29053597

RESUMEN

Due to the increase in working hours, the reliability of rubber O-ring seals used in hydraulic systems of transfer machines will change. While traditional methods can only analyze one of the material properties or seal properties, the failure of the O-ring is caused by these two factors together. In this paper, two factors are mainly analyzed: the degradation of material properties and load randomization by processing technology. Firstly, the two factors are defined in terms of material failure and seal failure, before the experimental methods of rubber materials are studied. Following this, the time-variant material properties through experiments and load distribution by monitoring the processing can be obtained. Thirdly, compressive stress and contact stress have been calculated, which was combined with the reliability model to acquire the time-variant reliability for the O-ring. Finally, the life prediction and effect of oil pressure were discussed, then compared with the actual situation. The results show a lifetime of 12 months for the O-ring calculated in this paper, and compared with the replacement records from the maintenance workshop, the result is credible.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...