Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Psychiatry ; 29(4): 1192-1204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212372

RESUMEN

At the center of the hippocampal tri-synaptic loop are synapses formed between mossy fiber (MF) terminals from granule cells in the dentate gyrus (DG) and proximal dendrites of CA3 pyramidal neurons. However, the molecular mechanism regulating the development and function of these synapses is poorly understood. In this study, we showed that neurotrophin-3 (NT3) was expressed in nearly all mature granule cells but not CA3 cells. We selectively deleted the NT3-encoding Ntf3 gene in the DG during the first two postnatal weeks to generate a Ntf3 conditional knockout (Ntf3-cKO). Ntf3-cKO mice of both sexes had normal hippocampal cytoarchitecture but displayed impairments in contextual memory, spatial reference memory, and nest building. Furthermore, male Ntf3-cKO mice exhibited anxiety-like behaviors, whereas female Ntf3-cKO showed some mild depressive symptoms. As MF-CA3 synapses are essential for encoding of contextual memory, we examined synaptic transmission at these synapses using ex vivo electrophysiological recordings. We found that Ntf3-cKO mice had impaired basal synaptic transmission due to deficits in excitatory postsynaptic currents mediated by AMPA receptors but normal presynaptic function and intrinsic excitability of CA3 pyramidal neurons. Consistent with this selective postsynaptic deficit, Ntf3-cKO mice had fewer and smaller thorny excrescences on proximal apical dendrites of CA3 neurons and lower GluR1 levels in the stratum lucidum area where MF-CA3 synapses reside but normal MF terminals, compared with control mice. Thus, our study indicates that NT3 expressed in the dentate gyrus is crucial for the postsynaptic structure and function of MF-CA3 synapses and hippocampal-dependent memory.


Asunto(s)
Región CA3 Hipocampal , Giro Dentado , Ratones Noqueados , Fibras Musgosas del Hipocampo , Neurotrofina 3 , Sinapsis , Animales , Giro Dentado/metabolismo , Fibras Musgosas del Hipocampo/metabolismo , Sinapsis/metabolismo , Ratones , Neurotrofina 3/metabolismo , Neurotrofina 3/genética , Masculino , Femenino , Región CA3 Hipocampal/metabolismo , Células Piramidales/metabolismo , Células Piramidales/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Transmisión Sináptica/fisiología , Cognición/fisiología , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Memoria/fisiología , Receptores AMPA/metabolismo
2.
SLAS Discov ; 28(3): 88-94, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842668

RESUMEN

Deficiencies in brain-derived neurotrophic factor (BDNF) have been linked to several brain disorders, making compounds that can boost neuronal BDNF synthesis attractive as potential therapeutics. However, a sensitive and quantitative BDNF assay for high-throughput screening (HTS) is still missing. Here we report the generation of a new mouse Bdnf allele, BdnfNLuc, in which the sequence encoding nano luciferase (NLuc) is inserted into the Bdnf locus immediately before the stop codon so that the allele will produce a BDNF-NLuc fusion protein. BDNF-NLuc protein appears to function like BDNF as BdnfNLuc/NLuc homozygous mice grew and behaved almost normally. We were able to establish and optimize cultures of cortical and hippocampal BdnfNLuc/+ neurons isolated from mouse embryos in 384-well plates. We used the cultures as a phenotypic assay to detect the ability of 10 mM KCl to stimulate BDNF synthesis and achieved a reproducible Z' factor > 0.50 for the assay, a measure considered suitable for HTS. We successfully scaled up the assay to screen the 1280-compound LOPAC library (Library of Pharmacologically Active Compounds). The screen identified several BDNF-boosting compounds, one of which is Bay K8644, a L-type voltage-gated calcium channel (L-VGCC) agonist, which was previously shown to stimulate BDNF synthesis. These results indicate that our phenotypic neuronal assay is ready for HTS to identify novel BDNF-boosting compounds.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Ensayos Analíticos de Alto Rendimiento , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuronas/metabolismo , Canales de Calcio Tipo L/metabolismo , Encéfalo/metabolismo
3.
Endocrinology ; 164(3)2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36631165

RESUMEN

High prevalence of obesity is attributable in part to consumption of highly palatable, fat-rich foods. However, the mechanism controlling dietary fat intake is largely unknown. In this study we investigated the role of brain-derived neurotrophic factor (BDNF) in the control of dietary fat intake in a mouse model that mimics the common human Val-to-Met (Val66Met) polymorphism that impairs BDNF release via the regulated secretory pathway. BdnfMet/Met mice gained weight much faster than wild-type (WT) mice and developed severe obesity due to marked hyperphagia when they were fed HFD. Hyperphagia in these mice worsened when the fat content in their diet was increased. Conversely, mice lacking leptin exhibited similar hyperphagia on chow and HFD. When 2 diets were provided simultaneously, WT and BdnfMet/Met mice showed a comparable preference for the more palatable diet rich in either fat or sucrose, indicating that increased hyperphagia on fat-rich diets in BdnfMet/Met mice is not due to enhanced hedonic drive. In support of this interpretation, WT and BdnfMet/Met mice increased calorie intake to a similar extent during the first day after chow was switched to HFD; however, WT mice decreased HFD intake faster than BdnfMet/Met mice in subsequent days. Furthermore, we found that refeeding after fasting or nocturnal feeding with HFD activated TrkB more strongly than with chow in the hypothalamus of WT mice, whereas TrkB activation under these 2 conditions was greatly attenuated in BdnfMet/Met mice. These results indicate that satiety factors generated during HFD feeding induce BDNF release to suppress excess dietary fat intake.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Hiperfagia , Animales , Ratones , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dieta , Dieta Alta en Grasa , Grasas de la Dieta/farmacología , Hiperfagia/genética , Obesidad/genética
4.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33468645

RESUMEN

Mutations in the TrkB neurotrophin receptor lead to profound obesity in humans, and expression of TrkB in the dorsomedial hypothalamus (DMH) is critical for maintaining energy homeostasis. However, the functional implications of TrkB-fexpressing neurons in the DMH (DMHTrkB) on energy expenditure are unclear. Additionally, the neurocircuitry underlying the effect of DMHTrkB neurons on energy homeostasis has not been explored. In this study, we show that activation of DMHTrkB neurons leads to a robust increase in adaptive thermogenesis and energy expenditure without altering heart rate or blood pressure, while silencing DMHTrkB neurons impairs thermogenesis. Furthermore, we reveal neuroanatomically and functionally distinct populations of DMHTrkB neurons that regulate food intake or thermogenesis. Activation of DMHTrkB neurons projecting to the raphe pallidus (RPa) stimulates thermogenesis and increased energy expenditure, whereas DMHTrkB neurons that send collaterals to the paraventricular hypothalamus (PVH) and preoptic area (POA) inhibit feeding. Together, our findings provide evidence that DMHTrkB neuronal activity plays an important role in regulating energy expenditure and delineate distinct neurocircuits that underly the separate effects of DMHTrkB neuronal activity on food intake and thermogenesis.


Asunto(s)
Regulación del Apetito/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , Núcleo Hipotalámico Paraventricular/metabolismo , Área Preóptica/metabolismo , Proteínas Tirosina Quinasas/genética , Termogénesis/genética , Animales , Ingestión de Alimentos/genética , Femenino , Regulación de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis/genética , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Transgénicos , Neuronas/citología , Neuronas/metabolismo , Núcleo Pálido del Rafe/citología , Núcleo Pálido del Rafe/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Área Preóptica/citología , Proteínas Tirosina Quinasas/metabolismo , Transducción de Señal , Proteína Fluorescente Roja
5.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32265438

RESUMEN

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Asunto(s)
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuronas/metabolismo , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/citología , Núcleo Hipotalámico Paraventricular/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Apetito/genética , Conducta Alimentaria/fisiología , Femenino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , Núcleos Parabraquiales/citología , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiopatología , Proteínas Tirosina Quinasas/genética , Núcleo Hipotalámico Ventromedial/citología , Núcleo Hipotalámico Ventromedial/metabolismo
6.
Nat Commun ; 11(1): 1797, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286273

RESUMEN

Mutations that inactivate negative translation regulators cause autism spectrum disorders (ASD), which predominantly affect males and exhibit social interaction and communication deficits and repetitive behaviors. However, the cells that cause ASD through elevated protein synthesis resulting from these mutations remain unknown. Here we employ conditional overexpression of translation initiation factor eIF4E to increase protein synthesis in specific brain cells. We show that exaggerated translation in microglia, but not neurons or astrocytes, leads to autism-like behaviors in male mice. Although microglial eIF4E overexpression elevates translation in both sexes, it only increases microglial density and size in males, accompanied by microglial shift from homeostatic to a functional state with enhanced phagocytic capacity but reduced motility and synapse engulfment. Consequently, cortical neurons in the mice have higher synapse density, neuroligins, and excitation-to-inhibition ratio compared to control mice. We propose that functional perturbation of male microglia is an important cause for sex-biased ASD.


Asunto(s)
Trastorno Autístico/metabolismo , Conducta Animal , Microglía/metabolismo , Biosíntesis de Proteínas , Animales , Proteínas de Unión al Calcio/metabolismo , Movimiento Celular , Femenino , Perfilación de la Expresión Génica , Genotipo , Homeostasis , Masculino , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Neuronas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fagocitosis , Corteza Prefrontal/metabolismo , Corteza Prefrontal/ultraestructura , Conducta Social , Sinapsis/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(8): 3256-3261, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30718415

RESUMEN

Genetic evidence indicates that brain-derived neurotrophic factor (BDNF) signaling through the TrkB receptor plays a critical role in the control of energy balance. Mutations in the BDNF or the TrkB-encoding NTRK2 gene have been found to cause severe obesity in humans and mice. However, it remains unknown which brain neurons express TrkB to control body weight. Here, we report that TrkB-expressing neurons in the dorsomedial hypothalamus (DMH) regulate food intake. We found that the DMH contains both glutamatergic and GABAergic TrkB-expressing neurons, some of which also express the leptin receptor (LepR). As revealed by Fos immunohistochemistry, a significant number of TrkB-expressing DMH (DMHTrkB) neurons were activated upon either overnight fasting or after refeeding. Chemogenetic activation of DMHTrkB neurons strongly suppressed feeding in the dark cycle when mice are physiologically hungry, whereas chemogenetic inhibition of DMHTrkB neurons greatly promoted feeding in the light cycle when mice are physiologically satiated, without affecting feeding in the dark cycle. Neuronal tracing revealed that DMHTrkB neurons do not innervate neurons expressing agouti-related protein in the arcuate nucleus, indicating that DMHTrkB neurons are distinct from previously identified LepR-expressing GABAergic DMH neurons that suppress feeding. Furthermore, selective Ntrk2 deletion in the DMH of adult mice led to hyperphagia, reduced energy expenditure, and obesity. Thus, our data show that DMHTrkB neurons are a population of neurons that are necessary and sufficient to suppress appetite and maintain physiological satiation. Pharmacological activation of these neurons could be a therapeutic intervention for the treatment of obesity.


Asunto(s)
Ingestión de Alimentos/genética , Metabolismo Energético/genética , Glicoproteínas de Membrana/genética , Obesidad/genética , Proteínas Tirosina Quinasas/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Neuronas GABAérgicas/metabolismo , Regulación de la Expresión Génica/genética , Homeostasis/genética , Humanos , Hipotálamo/metabolismo , Ratones , Obesidad/tratamiento farmacológico , Obesidad/patología , Fotoperiodo , Receptores de Leptina
8.
Cell Metab ; 29(4): 917-931.e4, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30661931

RESUMEN

Anxiety disorders are associated with body weight changes in humans. However, the mechanisms underlying anxiety-induced weight changes remain poorly understood. Using Emx1Cre/+ mice, we deleted the gene for brain-derived neurotrophic factor (BDNF) in the cortex, hippocampus, and some amygdalar subregions. The resulting mutant mice displayed impaired GABAergic transmission and elevated anxiety. They were leaner when fed either a chow diet or a high-fat diet, owing to higher sympathetic activity, basal metabolic rate, brown adipocyte thermogenesis, and beige adipocyte formation, compared to control mice. BDNF re-expression in the amygdala rescued the anxiety and metabolic phenotypes in mutant mice. Conversely, anxiety induced by amygdala-specific Bdnf deletion or administration of an inverse GABAA receptor agonist increased energy expenditure. These results reveal that increased activities in anxiogenic circuits can reduce body weight by promoting adaptive thermogenesis and basal metabolism via the sympathetic nervous system and suggest that amygdalar GABAergic neurons are a link between anxiety and metabolic dysfunction.


Asunto(s)
Ansiolíticos/farmacología , Bromazepam/farmacología , Carbolinas/farmacología , Metabolismo Energético/efectos de los fármacos , Obesidad/tratamiento farmacológico , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Ansiolíticos/administración & dosificación , Peso Corporal/efectos de los fármacos , Bromazepam/administración & dosificación , Carbolinas/administración & dosificación , Dieta , Ratones , Ratones Endogámicos , Obesidad/inducido químicamente , Obesidad/metabolismo
9.
Mol Metab ; 4(6): 471-82, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26042201

RESUMEN

OBJECTIVE: Brain-derived neurotrophic factor (BDNF) is a potent regulator of neuronal development, and the Bdnf gene produces two populations of transcripts with either a short or long 3' untranslated region (3' UTR). Deficiencies in BDNF signaling have been shown to cause severe obesity in humans; however, it remains unknown how BDNF signaling impacts the organization of neuronal circuits that control energy balance. METHODS: We examined the role of BDNF on survival, axonal projections, and synaptic inputs of neurons in the arcuate nucleus (ARH), a structure critical for the control of energy balance, using Bdnf (klox/klox) mice, which lack long 3' UTR Bdnf mRNA and develop severe hyperphagic obesity. RESULTS: We found that a small fraction of neurons that express the receptor for BDNF, TrkB, also expressed proopiomelanocortin (POMC) or neuropeptide Y (NPY)/agouti-related protein (AgRP) in the ARH. Bdnf(klox/klox) mice had normal numbers of POMC, NPY, and TrkB neurons in the ARH; however, retrograde labeling revealed a drastic reduction in the number of ARH axons that project to the paraventricular hypothalamus (PVH) in these mice. In addition, fewer POMC and AgRP axons were found in the dorsomedial hypothalamic nucleus (DMH) and the lateral part of PVH, respectively, in Bdnf (klox/klox) mice. Using immunohistochemistry, we examined the impact of BDNF deficiency on inputs to ARH neurons. We found that excitatory inputs onto POMC and NPY neurons were increased and decreased, respectively, in Bdnf (klox/klox) mice, likely due to a compensatory response to marked hyperphagia displayed by the mutant mice. CONCLUSION: This study shows that the majority of TrkB neurons in the ARH are distinct from known neuronal populations and that BDNF plays a critical role in directing projections from these neurons to the DMH and PVH. We propose that hyperphagic obesity due to BDNF deficiency is in part attributable to impaired axonal growth of TrkB-expressing ARH neurons.

10.
Cell Metab ; 22(1): 175-88, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26073495

RESUMEN

Brain-derived neurotrophic factor (BDNF) is a key regulator of energy balance; however, its underlying mechanism remains unknown. By analyzing BDNF-expressing neurons in paraventricular hypothalamus (PVH), we have uncovered neural circuits that control energy balance. The Bdnf gene in the PVH was mostly expressed in previously undefined neurons, and its deletion caused hyperphagia, reduced locomotor activity, impaired thermogenesis, and severe obesity. Hyperphagia and reduced locomotor activity were associated with Bdnf deletion in anterior PVH, whereas BDNF neurons in medial and posterior PVH drive thermogenesis by projecting to spinal cord and forming polysynaptic connections to brown adipose tissues. Furthermore, BDNF expression in the PVH was increased in response to cold exposure, and its ablation caused atrophy of sympathetic preganglionic neurons. Thus, BDNF neurons in anterior PVH control energy intake and locomotor activity, whereas those in medial and posterior PVH promote thermogenesis by releasing BDNF into spinal cord to boost sympathetic outflow.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metabolismo Energético , Conducta Alimentaria , Hipotálamo/citología , Hipotálamo/fisiología , Neuronas/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Femenino , Eliminación de Gen , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patología , Hipotálamo/patología , Locomoción , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/patología , Termogénesis
11.
Mol Metab ; 2(4): 491-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24327964

RESUMEN

Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB (tropomyosin receptor kinase B), are widely expressed in the brain where they regulate a wide variety of biological processes, including energy homeostasis. However, the specific population(s) of TrkB-expressing neurons through which BDNF governs energy homeostasis remain(s) to be determined. Using the Cre-loxP recombination system, we deleted the mouse TrkB gene in RGS9-2-expressing cells. In this mouse mutant, TrkB expression was abolished in several hypothalamic nuclei, including arcuate nucleus, dorsomedial hypothalamus, and lateral hypothalamus. TrkB expression was also abolished in a small number of cells in other brain regions, including the cerebral cortex and striatum. The mutant animals developed hyperphagic obesity with normal energy expenditure. Despite hyperglycemia under fed conditions, these animals exhibited normal fasting blood glucose levels and normal glucose tolerance. These results suggest that BDNF regulates energy homeostasis in part through TrkB-expressing neurons in the hypothalamus.

12.
J Neurosci ; 32(41): 14318-30, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23055503

RESUMEN

Brain-derived neurotrophic factor (BDNF) has been implicated in regulating adult neurogenesis in the subgranular zone (SGZ) of the dentate gyrus; however, the mechanism underlying this regulation remains unclear. In this study, we found that Bdnf mRNA localized to distal dendrites of dentate gyrus granule cells isolated from wild-type (WT) mice, but not from Bdnf(klox/klox) mice where the long 3' untranslated region (UTR) of Bdnf mRNA is truncated. KCl-induced membrane depolarization stimulated release of dendritic BDNF translated from long 3' UTR Bdnf mRNA in cultured hippocampal neurons, but not from short 3' UTR Bdnf mRNA. Bdnf(klox/klox) mice exhibited reduced expression of glutamic acid decarboxylase 65 (a GABA synthase), increased proliferation of progenitor cells, and impaired differentiation and maturation of newborn neurons in the SGZ. These deficits in adult neurogenesis were rescued with administration of phenobarbital, an enhancer of GABA(A) receptor activity. Furthermore, we observed similar neurogenesis deficits in mice where the receptor for BDNF, TrkB, was selectively abolished in parvalbumin (PV)-expressing GABAergic interneurons. Thus, our data suggest that locally synthesized BDNF in dendrites of granule cells promotes differentiation and maturation of progenitor cells in the SGZ by enhancing GABA release, at least in part, from PV-expressing GABAergic interneurons.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Transmisión Sináptica/genética , Regulación hacia Arriba/genética , Ácido gamma-Aminobutírico/biosíntesis , Factores de Edad , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neurogénesis/fisiología , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
13.
Nat Med ; 18(4): 564-71, 2012 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-22426422

RESUMEN

Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3' UTR developed severe hyperphagic obesity, which was completely reversed by viral expression of long 3' UTR Bdnf mRNA in the hypothalamus. In these mice, the ability of leptin to activate hypothalamic neurons and inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/genética , Dendritas/efectos de los fármacos , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Leptina/farmacología , ARN Mensajero/metabolismo , Regiones no Traducidas 3'/genética , Factores de Edad , Análisis de Varianza , Animales , Peso Corporal/genética , Células Cultivadas , Dendritas/genética , Modelos Animales de Enfermedad , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hipotálamo/citología , Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Obesidad/genética , Obesidad/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptor de Insulina/metabolismo , Receptor trkB/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción Genética
14.
Brain Res ; 1432: 7-14, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22137655

RESUMEN

Insulin modulates N-methyl-d-aspartate (NMDA) receptors in the CNS and potentiates recombinant NMDA receptor currents in Xenopus oocytes. We have previously found that insulin's potentiation of NMDA receptor currents in oocytes occurs in a subunit specific manner and via phosphorylation of specific C-terminal sites by protein tyrosine kinases (PTKs) and C-type protein kinases (PKCs). Insulin-mediated current potentiation of receptors containing the NR2A subunit occurs solely through the activation of PKCs. Activation of phosphoinositide 3-kinase (PI 3-kinase) is known to trigger many insulin-stimulated signaling pathways, and we show here that it lies at a critical step in the insulin-mediated potentiation of NMDA receptor currents. Incubation with the PI 3-kinase inhibitor wortmannin eliminates insulin potentiation of NMDA receptor currents in the oocytes. Atypical isoforms of PKC are known to be activated downstream in the insulin signaling pathway via activation of PI 3-kinase. We demonstrate that the atypical isoform PKC zeta (PKCζ) has a role in insulin-stimulated current potentiation of NR2A-containing NMDA receptors using an isoform-specific pseudosubstrate inhibitor of PKCζ.


Asunto(s)
Insulina/fisiología , Oocitos/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Proteína Quinasa C/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Androstadienos/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Femenino , Oocitos/efectos de los fármacos , Oocitos/enzimología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Especificidad por Sustrato/efectos de los fármacos , Especificidad por Sustrato/fisiología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Wortmanina , Xenopus laevis
15.
Proc Natl Acad Sci U S A ; 108(4): 1669-74, 2011 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-21205893

RESUMEN

In the peripheral nervous system, target tissues control the final size of innervating neuronal populations by producing limited amounts of survival-promoting neurotrophic factors during development. However, it remains largely unknown if the same principle works to regulate the size of neuronal populations in the developing brain. Here we show that neurotrophin signaling mediated by the TrkB receptor controls striatal size by promoting the survival of developing medium-sized spiny neurons (MSNs). Selective deletion of the gene for the TrkB receptor in striatal progenitors, using the Dlx5/6-Cre transgene, led to a hindpaw-clasping phenotype and a 50% loss of MSNs without affecting striatal interneurons. This loss resulted mainly from increased apoptosis of newborn MSNs within their birthplace, the lateral ganglionic eminence. Among MSNs, those expressing the dopamine receptor D2 (DRD2) were most affected, as indicated by a drastic loss of these neurons and specific down-regulation of the DRD2 and enkephalin. This specific phenotype of mutant animals is likely due to preferential TrkB expression in DRD2 MSNs. These findings suggest that neurotrophins can control the size of neuronal populations in the brain by promoting the survival of newborn neurons before they migrate to their final destinations.


Asunto(s)
Cuerpo Estriado/metabolismo , Neuronas/metabolismo , Receptor trkB/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Recuento de Células , Cuerpo Estriado/citología , Cuerpo Estriado/crecimiento & desarrollo , Regulación hacia Abajo , Encefalinas/metabolismo , Femenino , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Immunoblotting , Inmunohistoquímica , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Neuronas/citología , Receptor trkB/genética , Receptores de Dopamina D2/metabolismo , Factores de Tiempo
16.
Cell ; 134(1): 175-87, 2008 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-18614020

RESUMEN

The brain produces two brain-derived neurotrophic factor (BDNF) transcripts, with either short or long 3' untranslated regions (3' UTRs). The physiological significance of the two forms of mRNAs encoding the same protein is unknown. Here, we show that the short and long 3' UTR BDNF mRNAs are involved in different cellular functions. The short 3' UTR mRNAs are restricted to somata, whereas the long 3' UTR mRNAs are also localized in dendrites. In a mouse mutant where the long 3' UTR is truncated, dendritic targeting of BDNF mRNAs is impaired. There is little BDNF in hippocampal dendrites despite normal levels of total BDNF protein. This mutant exhibits deficits in pruning and enlargement of dendritic spines, as well as selective impairment in long-term potentiation in dendrites, but not somata, of hippocampal neurons. These results provide insights into local and dendritic actions of BDNF and reveal a mechanism for differential regulation of subcellular functions of proteins.


Asunto(s)
Regiones no Traducidas 3'/análisis , Regiones no Traducidas 3'/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Receptor trkB/genética , Receptor trkB/metabolismo , Animales , Dendritas/química , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Neuronas/citología , Poliadenilación , Biosíntesis de Proteínas , Receptor trkB/análisis
17.
Genesis ; 46(6): 289-93, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18543315

RESUMEN

Thalamocortical input to layer 4 carries the major ascending sensory information to the mammalian sensory cortex and is crucial for the function and plasticity of sensory cortical areas. Here we report identification of a Six3-cre transgene that is selectively expressed in layer 4 of sensory cortical areas but not in the thalamus. In the mature somatosensory cortex Cre recombinase expressed from the transgene is able to mediate gene deletion in the overwhelming majority of layer 4 neurons, including GABAergic interneurons. The gene deletion in layer 4 mainly occurs during the first postnatal week. This cre transgene therefore provides a useful tool for examining the role of proteins expressed in layer 4 neurons.


Asunto(s)
Proteínas del Ojo/genética , Eliminación de Gen , Proteínas de Homeodominio/genética , Integrasas/metabolismo , Proteínas del Tejido Nervioso/genética , Corteza Somatosensorial/citología , Corteza Somatosensorial/fisiología , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Integrasas/genética , Interneuronas/fisiología , Ratones , Ratones Transgénicos , Neuronas/fisiología , Transgenes , Proteína Homeobox SIX3
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...