Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Methods ; 16(3): 420-426, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38165136

RESUMEN

The efficient extraction of phthalic acid esters (PAEs) is challenging due to their extremely low concentration, complicated matrices and hydrophilicity. Herein, hollow microspheres, as an ideal coating, possess significant potential for solid-phase microextraction (SPME) due to their fascinating properties. In this study, multiwalled carbon nanotube hollow microspheres (MWCNT-HMs) were utilized as a fiber coating for the SPME of PAEs from tea beverages. MWCNT-HMs were obtained by dissolving the polystyrene (PS) cores with organic solvents. Interestingly, MWCNT-HMs well maintain the morphology of the MWCNTs@PS precursors. The layer-by-layer (LBL) assembly of MWCNTs on PS microsphere templates was achieved through electrostatic interactions. Six PAEs, di-ethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DBP), benzyl butyl phthalate (BBP), di-2-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DOP), were selected as target analytes for assessing the efficiency of the coating for SPME. The stirring rate, sample solution pH and extraction time were optimized by using the Box-Behnken design. Under optimal working conditions, the proposed MWCNT-HMs/SPME was coupled with gas chromatography-tandem mass spectrometry (GC-MS/MS) to achieve high enrichment factors (118-2137), wide linearity (0.0004-10 µg L-1), low limits of detection (0.00011-0.0026 µg L-1) and acceptable recovery (80.2-108.5%) for the detection of PAEs. Therefore, the MWCNT-HM coated fibers are promising alternatives in the SPME method for the sensitive detection of PAEs at trace levels in tea beverages.


Asunto(s)
Nanotubos de Carbono , Ácidos Ftálicos , Microextracción en Fase Sólida/métodos , Microesferas , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Masas en Tándem , Ácidos Ftálicos/análisis , Ácidos Ftálicos/química , Bebidas/análisis ,
2.
Talanta ; 253: 123930, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113335

RESUMEN

The layer-by-layer assembly technique was used to synthesize novel multiwalled carbon nanotubes (MWCNTs) on magnetic carbon (Fe3O4@C) nanospheres, which were then used to extract six perfluoroalkyl substances (PFAS) in environmental real water samples using ultra high-performance liquid chromatography coupled to tandem mass spectrometry. The as-synthesized sorbent MWCNTs@Fe3O4@C was employed for magnetic solid-phase extraction (MSPE). The as-prepared MWCNTs@Fe3O4@C was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and vibrating sample magnetometer (VSM). The main extraction parameters were systematically optimized by Box-Behnken design. Under optimal conditions, excellent results were achieved. The synthesized sorbent showed wide linear ranges (0.1-1000 ng L-1), low detection limits (0.03-0.09 ng L-1) and good repeatability (3.80%-9.52%) for extracting and detecting six PFAS. The developed method was also applied to analyze six PFAS from environmental water samples. This study indicated that MWCNTs@Fe3O4@C composites are promising materials for the extraction and determination of PFAS from water samples.


Asunto(s)
Nanotubos de Carbono , Extracción en Fase Sólida , Fenómenos Magnéticos , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...