Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Clin Pharmacol Ther ; 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973127

RESUMEN

The 2022 United States Food and Drug Administration (US FDA) draft guidance on diversity plan (DP), which will be implemented through the Diversity Action Plans by December 2025, under the 21st Century Cures Act, marks a pivotal effort by the FDA to ensure that registrational studies adequately reflect the target patient populations based on diversity in demographics and baseline characteristics. This white paper represents the culminated efforts of the International Consortium of Quality and Innovation (IQ) Diversity and Inclusion (D&I) Working Group (WG) to assess the implementation of the draft FDA guidance by members of the IQ consortium in the discipline of clinical pharmacology (CP). This article describes current practices in the industry and emphasizes the tools and techniques of quantitative pharmacology that can be applied to support the inclusion of a diverse population during global drug development, to support diversity and inclusion of underrepresented patient populations, in multiregional clinical trials (MRCTs). It outlines strategic and technical recommendations to integrate demographics, including age, sex/gender, race/ethnicity, and comorbidities, in multiregional phase III registrational studies, through the application of quantitative pharmacology. Finally, this article discusses the challenges faced during global drug development, which may otherwise limit the enrollment of a broader, potentially diverse population in registrational trials. Based on the outcomes of the IQ survey that provided the current awareness of diversity planning, it is envisioned that in the future, industry efforts in the inclusion of previously underrepresented populations during global drug development will culminate in drug labels that apply to the intended patient populations at the time of new drug application or biologics license application rather than through post-marketing requirements.

2.
Drug Metab Dispos ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811158

RESUMEN

Evidence-based dose selection of drugs in pregnant women has been lacking due to challenges in studying maternal-fetal pharmacokinetics. Hence, many drugs are administered off-label during pregnancy based on data obtained from non-pregnant women. During pregnancy, drug transporters play an important role in drug disposition along with known gestational age-dependent changes in physiology and drug-metabolizing enzymes. In this review, as Dr. Qingcheng Mao's former and current lab members, we summarize the collective contributions of Dr. Mao, who lost his life to cancer, focusing on the role of drug transporters in drug disposition during pregnancy. Dr. Mao and his team initiated their research by characterizing the structure of Breast Cancer Resistance Protein [BCRP, ATP-Binding Cassette (ABC) G2]. Subsequently, they have made significant contributions to the understanding of the role of BCRP and other transporters, particularly P-glycoprotein (P-gp/ABCB1), in the exposure of pregnant women and their fetuses to various drugs, including nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol, and their metabolites. This review also highlights the gestation- and pregnancy-dependent transporter expression at the blood-brain and blood-placenta barriers in mice. Significance Statement Dr. Qingcheng Mao and his team have made significant contributions to the investigation of the role of efflux transporters, especially P-glycoprotein and breast cancer resistance protein, in maternal-fetal exposure to many xenobiotics: nitrofurantoin, glyburide, buprenorphine, bupropion, tetrahydrocannabinol and their metabolites. Studies of individual compounds and the expression of transporters during gestation and pregnancy have improved the understanding of maternal-fetal pharmacokinetics.

3.
Xenobiotica ; : 1-11, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38738473

RESUMEN

(171/200)ADCs represent a transformative class of medicine that combines the specificity of monoclonal antibodies with the potency of highly cytotoxic agents through linkers, aiming to enhance the therapeutic index of cytotoxic drugs. Given the complex molecular structures of ADCs, combining the molecular characteristics of small-molecule drugs and those of large-molecule biotherapeutics, there are several unique considerations when designing nonclinical-to-clinical PK/PD translation strategies.This complexity also demands a thorough understanding of the ADC's components-antibody, linker, and payload-to the overall toxicological, PK/PD, and efficacy profile. ADC development is a multidisciplinary endeavor requiring a strategic integration of nonclinical safety, pharmacology, and PK/PD modeling to translate from bench to bedside successfully.The ADC development underscores the necessity for a robust scientific foundation, leveraging advanced analytical and modeling tools to predict human responses and optimize therapeutic outcomes.This review aims to provide an ADC translational PK/PD framework by discussing unique aspects of ADC nonclinical to clinical PK translation, starting dose determination, and leveraging PK/PD modeling for human efficacious dose prediction and potential safety mitigation.

4.
CPT Pharmacometrics Syst Pharmacol ; 13(6): 1055-1066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38622879

RESUMEN

Polatuzumab vedotin is a CD79b-directed antibody-drug conjugate that targets B cells and delivers the cytotoxic payload monomethyl auristatin E (MMAE). The phase III POLARIX study (NCT03274492) evaluated polatuzumab vedotin in combination with rituximab, cyclophosphamide, doxorubicin, and prednisone (R-CHP) as first-line treatment of diffuse large B-cell lymphoma (DLBCL). To examine dosing decisions for this regimen, population pharmacokinetic (popPK) analysis, using a previously developed popPK model, and exposure-response (ER) analysis, were performed. The popPK analysis showed no clinically meaningful relationship between cycle 6 (C6) antibody-conjugated (acMMAE)/unconjugated MMAE area under the concentration-time curve (AUC) or maximum concentration, and weight, sex, ethnicity, region, mild or moderate renal impairment, mild hepatic impairment, or other patient and disease characteristics. In the ER analysis, C6 acMMAE AUC was significantly associated with longer progression-free and event-free survival (both p = 0.01). An increase of <50% in acMMAE/unconjugated MMAE exposure did not lead to a clinically meaningful increase in adverse events of special interest. ER data and the benefit-risk profile support the use of polatuzumab vedotin 1.8 mg/kg once every 3 weeks with R-CHP for six cycles in patients with previously untreated DLBCL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Doxorrubicina , Linfoma de Células B Grandes Difuso , Prednisona , Rituximab , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Anciano , Doxorrubicina/farmacocinética , Doxorrubicina/análogos & derivados , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Ciclofosfamida/farmacocinética , Ciclofosfamida/administración & dosificación , Ciclofosfamida/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Prednisona/administración & dosificación , Prednisona/farmacocinética , Prednisona/uso terapéutico , Rituximab/farmacocinética , Rituximab/administración & dosificación , Rituximab/uso terapéutico , Adulto , Área Bajo la Curva , Modelos Biológicos , Inmunoconjugados/farmacocinética , Inmunoconjugados/administración & dosificación , Inmunoconjugados/efectos adversos , Anciano de 80 o más Años , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Relación Dosis-Respuesta a Droga , Supervivencia sin Progresión
6.
Adv Drug Deliv Rev ; 207: 115193, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311111

RESUMEN

The favorable benefit-risk profile of polatuzumab vedotin, as demonstrated in a pivotal Phase Ib/II randomized study (GO29365; NCT02257567), coupled with the need for effective therapies in relapsed/refractory (R/R) diffuse large B-cell lymphoma (DLBCL), prompted the need to accelerate polatuzumab vedotin development. An integrated, fit-for-purpose clinical pharmacology package was designed to support regulatory approval. To address key clinical pharmacology questions without dedicated clinical pharmacology studies, we leveraged non-clinical and clinical data for polatuzumab vedotin, published clinical data for brentuximab vedotin, a similar antibody-drug conjugate, and physiologically based pharmacokinetic and population pharmacokinetic modeling approaches. We review strategies and model-informed outcomes that contributed to regulatory approval of polatuzumab vedotin plus bendamustine and rituximab in R/R DLBCL. These strategies made polatuzumab vedotin available to patients earlier than previously possible; depending on the strength of available data and the regulatory/competitive environment, they may also prove useful in accelerating the development of other agents.


Asunto(s)
Inmunoconjugados , Linfoma de Células B Grandes Difuso , Linfoma no Hodgkin , Farmacología Clínica , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/patología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico
7.
Clin Transl Sci ; 16(12): 2744-2755, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37864313

RESUMEN

This ethnic sensitivity analysis used data from the phase III POLARIX study (NCT03274492) to assess polatuzumab vedotin pharmacokinetics (PKs) in Asian versus non-Asian patients with previously untreated diffuse large B-cell lymphoma and examined the appropriateness of extrapolating global study findings to Asian patients. PK and population PK (PopPK) analyses assessed polatuzumab vedotin analyte exposures by ethnicity (Asian [n = 84] vs. non-Asian [n = 345] patients) and region (patients enrolled from Asia [n = 80] vs. outside Asia [n = 349]). In patients from Asia versus outside Asia, observed mean antibody-conjugated monomethyl auristatin E (acMMAE) concentrations were comparable (1.2% lower at cycle [C]1 postdose, 4.4% higher at C4 predose; and 6.8% lower at C4 postdose in patients from Asia). Observed mean unconjugated MMAE was lower in patients from Asia by 6.5% (C1 postdose), 20.0% (C4 predose), and 15.3% (C4 postdose). In the PopPK analysis, C6 area under the curve and peak plasma concentrations were also comparable for acMMAE (6.3% and 3.0% lower in Asian vs. non-Asian patients, respectively) and lower for unconjugated MMAE by 19.1% and 16.7%, respectively. By region, C6 mean acMMAE concentrations were similar, and C6 mean unconjugated MMAE concentrations were lower, in patients enrolled from Asia versus outside Asia, by 3.9%-7.0% and 17.3%-19.7%, respectively. In conclusion, polatuzumab vedotin PKs were similar between Asian and non-Asian patients by ethnicity and region, suggesting PKs are not sensitive to Asian ethnicity and dose adjustments are not required in Asian patients to maintain efficacy and safety.


Asunto(s)
Inmunoconjugados , Linfoma de Células B Grandes Difuso , Humanos , Anticuerpos Monoclonales/farmacocinética , Asia , Inmunoconjugados/farmacocinética , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Ensayos Clínicos Fase III como Asunto
8.
AAPS J ; 25(5): 78, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37523051

RESUMEN

Interest and efforts to use recombinant adeno-associated viruses (AAV) as gene therapy delivery tools to treat disease have grown exponentially. However, gaps in understanding of the pharmacokinetics/pharmacodynamics (PK/PD) and disposition of this modality exist. This position paper comes from the Novel Modalities Working Group (WG), part of the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ). The pan-industry WG effort focuses on the nonclinical PK and clinical pharmacology aspects of AAV gene therapy and related bioanalytical considerations.Traditional PK concepts are generally not applicable to AAV-based therapies due to the inherent complexity of a transgene-carrying viral vector, and the multiple steps and analytes involved in cell transduction and transgene-derived protein expression. Therefore, we explain PK concepts of biodistribution of AAV-based therapies and place key terminologies related to drug exposure and PD in the proper context. Factors affecting biodistribution are presented in detail, and guidelines are provided to design nonclinical studies to enable a stage-gated progression to Phase 1 testing. The nonclinical and clinical utility of transgene DNA, mRNA, and protein analytes are discussed with bioanalytical strategies to measure these analytes. The pros and cons of qPCR vs. ddPCR technologies for DNA/RNA measurement and qualitative vs. quantitative methods for transgene-derived protein are also presented. Last, best practices and recommendations for use of clinical and nonclinical data to project human dose and response are discussed. Together, the manuscript provides a holistic framework to discuss evolving concepts of PK/PD modeling, bioanalytical technologies, and clinical dose selection in gene therapy.


Asunto(s)
Dependovirus , Terapia Genética , Humanos , Dependovirus/genética , Distribución Tisular , Desarrollo de Medicamentos , Reacción en Cadena de la Polimerasa
9.
Clin Pharmacol Ther ; 114(3): 530-557, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37393588

RESUMEN

With the promise of a potentially "single dose curative" paradigm, CAR-T cell therapies have brought a paradigm shift in the treatment and management of hematological malignancies. Both CAR-T and TCR-T cell therapies have also made great progress toward the successful treatment of solid tumor indications. The field is rapidly evolving with recent advancements including the clinical development of "off-the-shelf" allogeneic CAR-T therapies that can overcome the long and difficult "vein-to-vein" wait time seen with autologous CAR-T therapies. There are unique clinical pharmacology, pharmacometric, bioanalytical, and immunogenicity considerations and challenges in the development of these CAR-T and TCR-T cell therapies. Hence, to help accelerate the development of these life-saving therapies for the patients with cancer, experts in this field came together under the umbrella of International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) to form a joint working group between the Clinical Pharmacology Leadership Group (CPLG) and the Translational and ADME Sciences Leadership Group (TALG). In this white paper, we present the IQ consortium perspective on the best practices and considerations for clinical pharmacology and pharmacometric aspects toward the optimal development of CAR-T and TCR-T cell therapies.


Asunto(s)
Neoplasias , Farmacología Clínica , Receptores Quiméricos de Antígenos , Humanos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Neoplasias/terapia , Inmunoterapia Adoptiva/efectos adversos
10.
Clin Transl Sci ; 16(4): 564-574, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36631818

RESUMEN

Gastric cancer (GC) remains one of the leading causes of cancer death worldwide despite improvements in therapeutic options. Several biologics have been investigated in patients with GC, including those approved in other solid tumors; however, the success rate of the pivotal trials that investigated these biologic molecules in GC remains low. Elevation in total clearance and a decrease in systemic pharmacokinetic (PK) exposure in GC compared with other indications have been observed in these biologics across different pathways. Achieving optimal exposure for patients with GC is an important factor in balancing risk and optimizing therapeutic benefit and thus maximizing chance of positive outcomes for pivotal trials. Therefore, in this review, we summarize the PK disposition of several molecules (e.g., anti-HER2, anti-VEGF, and anti-PD1) evaluated in GC and showed a consistent trend of lower drug exposure as compared to other solid tumors. We hypothesize that two possible mechanisms: (1) hyper-catabolism of endogenous and exogenous proteins due to cancer cachexia; and (2) gastric protein leakage due to local inflammation at the gastrointestinal tract may explain or partially explain the increase of clearance in patients with GC. Last, the potential implications of such findings on dose selection to optimize the benefit: risk profile for biologics in GC are also discussed.


Asunto(s)
Productos Biológicos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Productos Biológicos/efectos adversos
11.
J Clin Pharmacol ; 62 Suppl 2: S79-S94, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36461742

RESUMEN

Recombinant adeno-associated virus (AAV) is currently the most widely used platform for in vivo gene therapy. Clinical pharmacology is a central field for AAV gene therapy, represented by the pillars of pharmacokinetics, pharmacodynamics/efficacy, and safety. In this review, we provide a comprehensive summary of clinical pharmacology considerations for recombinant AAV. The main topics covered are biodistribution and shedding, dose-exposure-response relationship, safety, immune and stress response, and clinical dose selection strategies. We highlight how the cumulative knowledge of AAV gene therapy could help with guiding clinical trial design and assessing and mitigating risks, as well as planning and executing pharmacokinetic/pharmacodynamic /safety data analyses. In addition, we discuss the major gaps and areas of growth in clinical pharmacology understanding of recombinant AAV. These include the mechanisms of the durability of treatment response and variability in biodistribution, transduction, and immunogenicity, as well as a potential influence on AAV's safety and efficacy profiles by drug product characteristics and patient intrinsic/extrinsic factors.


Asunto(s)
Farmacología Clínica , Humanos , Dependovirus/genética , Distribución Tisular , Terapia Genética
12.
Clin Pharmacol Ther ; 112(5): 968-981, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34888856

RESUMEN

Adoptive cell therapies (ACTs) have shown transformative efficacy in oncology with five US Food and Drug Administration (FDA) approvals for chimeric antigen receptor (CAR) T-cell therapies in hematological malignancies, and promising activity for T cell receptor T-cell therapies in both liquid and solid tumors. Clinical pharmacology can play a pivotal role in optimizing ACTs, aided by modeling and simulation toolboxes and deep understanding of the underlying biological and immunological processes. Close collaboration and multilevel data integration across functions, including chemistry, manufacturing, and control, biomarkers, bioanalytical, and clinical science and safety teams will be critical to ACT development. As ACT is comprised of alive, polyfunctional, and heterogeneous immune cells, its overall physicochemical and pharmacological property is vastly different from other platforms/modalities, such as small molecule and protein therapeutics. In this review, we first describe the unique kinetics of T cells and the appropriate bioanalytical strategies to characterize cellular kinetics. We then assess the distinct aspects of clinical pharmacology for ACTs in comparison to traditional small molecule and protein therapeutics. Additionally, we provide a review for the five FDA-approved CAR T-cell therapies and summarize their properties, cellular kinetic characteristics, dose-exposure-response relationship, and potential baseline factors/variables in product, patient, and regimen that may affect the safety and efficacy. Finally, we probe into existing empirical and mechanistic quantitative techniques to understand how various modeling and simulation approaches can support clinical pharmacology strategy and propose key considerations to be incorporated and explored in future models.


Asunto(s)
Neoplasias , Farmacología Clínica , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Receptores de Antígenos de Linfocitos T , Linfocitos T
13.
J Clin Oncol ; 39(36): 4049-4060, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34709929

RESUMEN

PURPOSE: The CLL14 study has established one-year fixed-duration treatment of venetoclax and obinutuzumab (Ven-Obi) for patients with previously untreated chronic lymphocytic leukemia. With all patients off treatment for at least three years, we report a detailed analysis of minimal residual disease (MRD) kinetics and long-term outcome of patients treated in the CLL14 study. PATIENTS AND METHODS: Patients were randomly assigned to receive six cycles of obinutuzumab with 12 cycles of venetoclax or 12 cycles of chlorambucil (Clb-Obi). Progression-free survival (PFS) was the primary end point. Key secondary end points included rates of undetectable MRD and overall survival. To analyze MRD kinetics, a population-based growth model with nonlinear mixed effects approach was developed. RESULTS: Of 432 patients, 216 were assigned to Ven-Obi and 216 to Clb-Obi. Three months after treatment completion, 40% of patients in the Ven-Obi arm (7% in the Clb-Obi arm) had undetectable MRD levels < 10-6 by next-generation sequencing in peripheral blood. Median MRD doubling time was longer after Ven-Obi than Clb-Obi therapy (median 80 v 69 days). At a median follow-up of 52.4 months, a sustained significant PFS improvement was observed in the Ven-Obi arm compared with Clb-Obi (median not reached v 36.4 months; hazard ratio 0.33; 95% CI, 0.25 to 0.45; P < .0001). The estimated 4-year PFS rate was 74.0% in the Ven-Obi and 35.4% in the Clb-Obi arm. No difference in overall survival was observed (hazard ratio 0.85; 95% CI, 0.54 to 1.35; P = .49). No new safety signals occurred. CONCLUSION: Appearance of MRD after Ven-Obi is significantly slower than that after Clb-Obi with more effective MRD reduction. These findings translate into a superior long-term efficacy with the majority of Ven-Obi-treated patients remaining in remission.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Neoplasia Residual/inducido químicamente , Sulfonamidas/efectos adversos , Anticuerpos Monoclonales Humanizados/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Biosimilares Farmacéuticos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Femenino , Humanos , Masculino , Sulfonamidas/farmacología
14.
Cancer Chemother Pharmacol ; 88(4): 665-672, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34213592

RESUMEN

PURPOSE: Panitumumab is a human monoclonal antibody targeting the epidermal growth factor receptor for the treatment of wild-type RAS metastatic colorectal cancer (mCRC). Currently, no dedicated clinical studies have evaluated the effect of organ impairment on the pharmacokinetics of panitumumab. Here, we present data from late phase studies of panitumumab in patients with mCRC and analyses of the effect of hepatic or renal impairment on the exposure of panitumumab. METHODS: From three multicenter, open-label, phase 2 and phase 3 studies, 349 and 351 patients were included in hepatic and renal function subgroup analyses, respectively. Patients who received IV panitumumab and serum exposures were compared to patients with varying degrees of hepatic and renal organ dysfunction. RESULTS: The Cmax and Ctrough values for patients with mild (n = 119) and moderate (n = 4) hepatic impairment were within the range of serum concentrations of panitumumab for the normal hepatic function subgroup. The distributions of serum concentration of panitumumab in patients with mild (n = 85) or moderate (n = 19) renal impairment were similar to the serum concentrations of panitumumab in the normal renal function subgroup. Population pharmacokinetic modeling and covariate analysis results were also consistent with lack of any significant effect of renal or hepatic impairment on the pharmacokinetics of panitumumab. Additionally, real-world evidence from case studies of patients with mCRC and severe hepatic or renal impairment, which is a rare patient population to study, indicated lack of clinically relevant differences in exposure of panitumumab compared with patients with mCRC and normal hepatic or renal function. CONCLUSIONS: Mild-to-moderate hepatic or renal dysfunction had no clinically meaningful impact on the pharmacokinetics of panitumumab in patients with mCRC. No dose adjustments for panitumumab are warranted in patients with mCRC with mild-to-moderate hepatic or renal dysfunction. TRIAL REGISTRATION: ClinicalTrials.gov; NCT00083616, NCT00089635, NCT00113763.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Enfermedades Renales/fisiopatología , Hepatopatías/fisiopatología , Panitumumab/administración & dosificación , Administración Intravenosa , Anciano , Antineoplásicos Inmunológicos/administración & dosificación , Antineoplásicos Inmunológicos/farmacocinética , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Panitumumab/farmacocinética , Ensayos Clínicos Controlados Aleatorios como Asunto , Índice de Severidad de la Enfermedad , Proteínas ras/genética
15.
Clin Pharmacol Ther ; 110(5): 1216-1230, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33899934

RESUMEN

Antibody-drug conjugates (ADCs) combine the specificity of an antibody with the cytotoxicity of a chemical agent. They represent a rapidly evolving area of oncology drug development and hold significant promise. There are currently nine ADCs on the market, more than half of which gained US Food and Drug Administration approval more recently, since 2019. Despite their enormous promise, the therapeutic window for these ADCs remains relatively narrow, especially when compared with other oncology drugs, such as targeted therapies or checkpoint inhibitors. In this review, we provide a detailed overview of the five dosing regimen optimization strategies that have been leveraged to broaden the therapeutic window by mitigating the safety risks while maintaining efficacy. These include body weight cap dosing; treatment duration capping; dose schedule (e.g., dosing frequency and dose fractionation); response-guided dosing recommendations; and randomized dose-finding. We then discuss how the lessons learned from these studies can inform ADC development going forward. Informed application of these dosing strategies should allow researchers to maximize the safety and efficacy for next-generation ADCs.


Asunto(s)
Antineoplásicos/administración & dosificación , Aprobación de Drogas/métodos , Inmunoconjugados/administración & dosificación , Modelos Biológicos , Neoplasias/tratamiento farmacológico , United States Food and Drug Administration , Antineoplásicos/farmacocinética , Ensayos Clínicos como Asunto/métodos , Relación Dosis-Respuesta a Droga , Humanos , Inmunoconjugados/farmacocinética , Neoplasias/epidemiología , Neoplasias/metabolismo , Estados Unidos/epidemiología
16.
Clin Cancer Res ; 27(10): 2928-2937, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33504551

RESUMEN

PURPOSE: Metastatic castration-resistant prostate cancer (mCRPC) remains a disease with high unmet medical need, as most patients do not achieve durable response with available treatments. Prostate-specific membrane antigen (PSMA) is a compelling target for mCRPC. It is highly expressed by primary and metastatic prostate cancer cells, with increased expression after progression on androgen deprivation therapy. EXPERIMENTAL DESIGN: We developed AMG 160, a half-life extended, bispecific T-cell engager immuno-oncology therapy that binds PSMA on prostate cancer cells and cluster of differentiation 3 on T cells for treatment of mCRPC. AMG 160 was evaluated in vitro and in mCRPC xenograft models. AMG 160 tolerability was assessed in nonhuman primates (NHP). AMG 160 activity as monotherapy and in combination with a PSMA-imaging agent, novel hormonal therapy, and immune checkpoint blockade was evaluated. RESULTS: AMG 160 induces potent, specific killing of PSMA-expressing prostate cancer cell lines in vitro, with half-maximal lysis of 6-42 pmol/L. In vivo, AMG 160 administered weekly at 0.2 mg/kg engages T cells administered systemically and promotes regression of established 22Rv-1 mCRPC xenograft tumors. AMG 160 is compatible with the imaging agent gallium 68-labeled PSMA-11, and shows enhanced cytotoxic activity when combined with enzalutamide or an anti-programmed death-1 antibody. AMG 160 exhibits an extended half-life and has an acceptable safety profile in NHPs. CONCLUSIONS: The preclinical characterization of AMG 160 highlights its potent antitumor activity in vitro and in vivo, and its potential for use with known diagnostic or therapeutic agents in mCRPC. These data support the ongoing clinical evaluation of AMG 160 in patients with mCRPC.See related commentary by Kamat et al., p. 2675.


Asunto(s)
Traslado Adoptivo/métodos , Antígenos de Superficie/inmunología , Glutamato Carboxipeptidasa II/inmunología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Linfocitos T/inmunología , Animales , Complejo CD3/antagonistas & inhibidores , Complejo CD3/inmunología , Complejo CD3/metabolismo , Línea Celular Tumoral , Citocinas/metabolismo , Citotoxicidad Inmunológica , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Glutamato Carboxipeptidasa II/antagonistas & inhibidores , Humanos , Activación de Linfocitos/inmunología , Masculino , Ratones , Neoplasias de la Próstata Resistentes a la Castración/patología , Linfocitos T/metabolismo , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Clin Pharmacol ; 12: 109-114, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801947

RESUMEN

INTRODUCTION: Body weight can affect exposure, safety and efficacy of antibody-based therapies; sometimes these effects may not be clinically relevant. Panitumumab is approved for wild-type RAS metastatic colorectal cancer, using a body weight-based dosing regimen. Recently, a report cited fixed-dose usage of panitumumab, rather than approved body weight-based dosing. The current work evaluates optimal dosing regimen scientifically based on clinical data, modeling and simulation. Herein, we assessed the effect of fixed and body weight-based dosing on panitumumab pharmacokinetics to determine which approach resulted in the least interpatient pharmacokinetic variability. PATIENTS AND METHODS: From the Vectibix program, 352 patients enrolled in three studies were evaluated; they had received panitumumab (body weight-based dose: 6 mg/kg every 2 weeks) and had pharmacokinetic (maximum serum [Cmax] and trough [Cmin] concentrations) and body weight data available. Additionally, concentration-time profiles at fixed (480 mg) and body weight-based doses (6 mg/kg) were simulated using a population pharmacokinetics model developed from 1200 patients. RESULTS: After administration of panitumumab 6 mg/kg, Cmax and Cmin increased with increasing body weight; the mean Cmax and Cmin for patients weighing <65 kg (lower quartile) were 23% and 30% lower, respectively, than for those weighing >88 kg (upper quartile). The simulated area under the concentration-time curve (AUC) data also indicated that overall panitumumab exposure increased with increasing body weight for the body weight-based regimen. When AUC was simulated for a fixed dose (480 mg), the opposite effect was observed. Over the range of body weights, interpatient variability in simulated AUC was lower for the weight-based dose (29%) than for the fixed dose (34%). CONCLUSION: Results demonstrate that the weight-based dose (6 mg/kg) reduced variability in panitumumab exposure across the range of body weights compared with the fixed-dose approach, indicating that a body weight-based approach is the recommended patient dosing strategy.

19.
Drug Metab Dispos ; 48(4): 264-271, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980499

RESUMEN

This study's primary objective was to fully characterize the pharmacokinetics of metformin in pregnant women with gestational diabetes mellitus (GDM) versus nonpregnant controls. Steady-state oral metformin pharmacokinetics in pregnant women with GDM receiving either metformin monotherapy (n = 24) or a combination with glyburide (n = 30) as well as in nonpregnant women with type 2 diabetes mellitus (T2DM) (n = 24) were determined utilizing noncompartmental techniques. Maternal and umbilical cord blood samples were collected at delivery from 38 women. With both 500- and 1000-mg doses, metformin bioavailability, volume of distribution beta (V ß ), clearance, and renal clearance were significantly increased during pregnancy. In addition, in the women receiving metformin 500 mg, significantly higher metformin apparent oral clearance (CL/F) (27%), weight-adjusted renal secretion clearance (64%), and apparent oral volume of distribution beta (V ß /F) (33%) were seen during pregnancy. Creatinine clearance was significantly higher during pregnancy. Increasing metformin dose from 500 to 1000 mg orally twice daily significantly increased V ß /F by 28%, weight-adjusted V ß /F by 32% and CL/F by 25%, and weight-adjusted CL/F by 28% during pregnancy. Mean metformin umbilical cord arterial-to-venous plasma concentration ratio was 1.0 ± 0.1, venous umbilical cord-to-maternal concentration ratio was 1.4 ± 0.5, and arterial umbilical cord-to-maternal concentration ratio was 1.5 ± 0.5. Systemic exposure after a 500-mg dose of metformin was lower during pregnancy compared with the nonpregnant women with T2DM. However, in patients receiving metformin 1000 mg, changes in estimated bioavailability during pregnancy offset the changes in clearance leading to no significant change in CL/F with the higher dose. SIGNIFICANCE STATEMENT: Gestational diabetes mellitus complicates 5%-13% of pregnancies and is often treated with metformin. Pregnant women undergo physiological changes that alter drug disposition. Preliminary data suggest that pregnancy lowers metformin concentrations, potentially affecting efficacy and safety. This study definitively describes pregnancy's effects on metformin pharmacokinetics and expands the mechanistic understanding of pharmacokinetic changes across the dosage range. Here we report the nonlinearity of metformin pharmacokinetics and the increase in bioavailability, clearance, renal clearance, and volume of distribution during pregnancy.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Gestacional/tratamiento farmacológico , Hipoglucemiantes/farmacocinética , Metformina/farmacocinética , Adolescente , Adulto , Disponibilidad Biológica , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/orina , Diabetes Gestacional/sangre , Diabetes Gestacional/orina , Relación Dosis-Respuesta a Droga , Femenino , Sangre Fetal , Humanos , Hipoglucemiantes/administración & dosificación , Metformina/administración & dosificación , Persona de Mediana Edad , Embarazo , Estudios Prospectivos , Eliminación Renal , Adulto Joven
20.
Drug Metab Lett ; 12(2): 145-152, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29938623

RESUMEN

BACKGROUND: Few studies have systematically investigated pregnancy-induced changes in protein abundance of drug transporters in organs important for drug/xenobiotic disposition. OBJECTIVE: The goal of this study was to compare protein abundance of important drug/xenobiotic transporters including Abcb1a, Abcg2, Abcc2, and Slco1b2 in the liver, kidney and brain of pregnant mice on gestation day 15 to that of non-pregnant mice. METHODS: The mass spectrometry-based proteomics was used to quantify changes in protein abundance of transporters in tissues from pregnant and non-pregnant mice. RESULTS: The protein levels of hepatic Abcc2, Abcc3, and Slco1a4 per µg of total membrane proteins were significantly decreased by pregnancy by 24%, 72%, and 70%, respectively. The protein levels of Abcg2, Abcc2, and Slco2b1 per µg of total membrane proteins in the kidney were significantly decreased by pregnancy by 43%, 50%, and 46%, respectively. After scaling to the whole liver with consideration of increase in liver weight in pregnant mice, the protein abundance of Abcb1a, Abcg2, Abcc2, Abcb11, Abcc4, Slco1a1, and Slco1b2 in the liver was ~50-100% higher in pregnant mice, while those of Abcc3 and Slco1a4 were ~40% lower. After scaling to the whole kidney, none of the transporters examined were significantly changed by pregnancy. Only Abcg2 and Abcb1a were quantifiable in the brain and their abundance in the brain was not influenced by pregnancy. CONCLUSION: Protein abundance of drug transporters can be significantly changed particularly in the liver by pregnancy. These results will be helpful to understand pregnancy-induced changes in drug/xenobiotic disposition in the mouse model.


Asunto(s)
Encéfalo/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteómica/métodos , Animales , Cromatografía Liquida , Femenino , Edad Gestacional , Ratones , Embarazo , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA