Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neural Plast ; 2021: 9954547, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512748

RESUMEN

Background: Previous studies have revealed the abnormalities in homotopic connectivity in schizophrenia. However, the relationship of these deficits to antipsychotic treatment in schizophrenia remains unclear. This study explored the effects of antipsychotic therapy on brain homotopic connectivity and whether the homotopic connectivity of these regions might predict individual treatment response in schizophrenic patients. Methods: A total of 21 schizophrenic patients and 20 healthy controls were scanned by the resting-state functional magnetic resonance imaging. The patients received olanzapine treatment and were scanned at two time points. Voxel-mirrored homotopic connectivity (VMHC) and pattern classification techniques were applied to analyze the imaging data. Results: Schizophrenic patients presented significantly decreased VMHC in the temporal and inferior frontal gyri, medial prefrontal cortex (MPFC), and motor and low-level sensory processing regions (including the fusiform gyrus and cerebellum lobule VI) relative to healthy controls. The VMHC in the superior/middle MPFC was significantly increased in the patients after eight weeks of treatment. Support vector regression (SVR) analyses revealed that VMHC in the superior/middle MPFC at baseline can predict the symptomatic improvement of the positive and negative syndrome scale after eight weeks of treatment. Conclusions: This study demonstrated that olanzapine treatment may normalize decreased homotopic connectivity in the superior/middle MPFC in schizophrenic patients. The VMHC in the superior/middle MPFC may predict individual response for antipsychotic therapy. The findings of this study conduce to the comprehension of the therapy effects of antipsychotic medications on homotopic connectivity in schizophrenia.


Asunto(s)
Antipsicóticos/uso terapéutico , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Olanzapina/uso terapéutico , Corteza Prefrontal/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Adolescente , Adulto , Antipsicóticos/farmacología , Femenino , Humanos , Masculino , Red Nerviosa/efectos de los fármacos , Olanzapina/farmacología , Valor Predictivo de las Pruebas , Corteza Prefrontal/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico , Resultado del Tratamiento , Adulto Joven
2.
Eur Arch Psychiatry Clin Neurosci ; 271(4): 783-798, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32215727

RESUMEN

Previous studies have demonstrated the efficacy of metacognitive training (MCT) in schizophrenia. However, the underlying mechanisms related to therapeutic effect of MCT remain unknown. The present study explored the treatment effects of MCT on brain regional neural activity using regional homogeneity (ReHo) and whether these regions' activities could predict individual treatment response in schizophrenia. Forty-one patients with schizophrenia and 20 healthy controls were scanned using resting-state functional magnetic resonance imaging. Patients were randomly divided into drug therapy (DT) and drug plus psychotherapy (DPP) groups. The DT group received only olanzapine treatment, whereas the DPP group received olanzapine and MCT for 8 weeks. The results revealed that ReHo in the right precuneus, left superior medial prefrontal cortex (MPFC), right parahippocampal gyrus and left rectus was significantly increased in the DPP group after 8 weeks of treatment. Patients in the DT group showed significantly increased ReHo in the left ventral MPFC/anterior cingulate cortex (ACC), left superior MPFC/middle frontal gyrus (MFG), left precuneus, right rectus and left MFG, and significantly decreased ReHo in the bilateral cerebellum VIII and left inferior occipital gyrus (IOG) after treatment. Support vector regression analyses showed that high ReHo levels at baseline in the right precuneus and left superior MPFC could predict symptomatic improvement of Positive and Negative Syndrome Scale (PANSS) after 8 weeks of DPP treatment. Moreover, high ReHo levels at baseline and alterations of ReHo in the left ventral MPFC/ACC could predict symptomatic improvement of PANSS after 8 weeks of DT treatment. This study suggests that MCT is associated with the modulation of ReHo in schizophrenia. ReHo in the right precuneus and left superior MPFC may predict individual therapeutic response for MCT in patients with schizophrenia.


Asunto(s)
Esquizofrenia , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Humanos , Imagen por Resonancia Magnética , Olanzapina , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/tratamiento farmacológico
3.
Front Psychiatry ; 11: 234, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32292360

RESUMEN

BACKGROUND: Previous studies have revealed the efficacy of metacognitive training for schizophrenia. However, the underlying mechanisms of metacognitive training on brain function alterations, including the default-mode network (DMN), remain unknown. The present study explored treatment effects of metacognitive training on functional connectivity of the brain regions in the DMN. METHODS: Forty-one patients with schizophrenia and 20 healthy controls were scanned using resting-state functional magnetic resonance imaging. Patients were randomly assigned to drug plus psychotherapy (DPP) and drug therapy (DT) groups. The DPP group received olanzapine and metacognitive training, and the DT group received only olanzapine for 8 weeks. Network homogeneity (NH) was applied to analyze the imaging data, and pattern classification techniques were applied to test whether abnormal NH deficits at baseline might be used to discriminate patients from healthy controls. Abnormal NH in predicting treatment response was also examined in each patient group. RESULTS: Compared with healthy controls, patients at baseline showed decreased NH in the bilateral ventral medial prefrontal cortex (MPFC), right posterior cingulate cortex (PCC)/precuneus, and bilateral precuneus and increased NH in the right cerebellum Crus II and bilateral superior MPFC. NH values in the right PCC/precuneus increased in the DPP group after 8 weeks of treatment, whereas no substantial difference in NH value was observed in the DT group. Support vector machine analyses showed that the accuracy, sensitivity, and specificity for distinguishing patients from healthy controls were more than 0.7 in the NH values of the right PCC/precuneus, bilateral ventral MPFC, bilateral superior MPFC, and bilateral precuneus regions. Support vector regression analyses showed that high NH levels at baseline in the bilateral superior MPFC could predict symptomatic improvement of positive and negative syndrome scale (PANSS) after 8 weeks of DPP treatment. No correlations were found between alterations in the NH values and changes in the PANSS scores/cognition parameters in the patients. CONCLUSION: This study provides evidence that metacognitive training is related to the modulation of DMN homogeneity in schizophrenia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...