Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Foods ; 12(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37893745

RESUMEN

The liver is the primary organ regulating glucose metabolism. In our recent study, cinnamon improved liver function in diabetic mice. However, it is not clear whether cinnamon can reduce the glycemia of diabetic animals by regulating liver glucose metabolism. The purpose of this study was to investigate the hypoglycemic mechanism of cinnamon powder (CP) from the perspective of regulating liver glucose metabolism. To achieve this, different doses of CP (200, 400, or 800 mg/kg body weight) were given to diabetic mice by gavage once per day for 8 weeks. These mice were compared with healthy controls, untreated diabetic mice, and diabetic mice treated with metformin (the main first-line drug for type 2 diabetes). CP treatment effectively reduced fasting blood glucose levels and food intake, improved glucose tolerance and fasting serum insulin levels, and decreased glycated serum protein levels in diabetic mice. Furthermore, treatment with CP increased liver glycogen content and reduced the level of the gluconeogenesis precursor pyruvate in the liver. Data obtained by qPCR and western blotting suggested that CP improved glucose metabolism disorders by regulating AMPKα/PGC1α-mediated hepatic gluconeogenesis and PI3K/AKT-mediated hepatic glycogen synthesis. CP exhibits good hypoglycemic effects by improving hepatic glycogen synthesis and controlling hepatic gluconeogenesis. Therefore, CP may be applied as a functional food to decrease blood glucose.

2.
Curr Res Food Sci ; 7: 100592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37766891

RESUMEN

Bioactive compounds are highly valuable in the fields of food and medicine, but their application is limited due to easy deterioration after oral or skin administration. In recent years, the use of peptides as delivery systems for bioactive compounds has been intensively researched because of their special physicochemical characteristics. Peptides can be assembled using various preparation methods and can form several composite materials such as hydrogels, micelles, emulsions and particles. The composite material properties are determined by peptides, bioactive compounds and the construction methods employed. Herein, this paper provides a comprehensive review of the peptides used for active ingredients delivery, fabrication methods for creating delivery systems, structures, targeting characteristics, functional activities and mechanism of delivery systems, as well as their absorption and metabolism, which provided theoretical basis and reference for further research and development of functional composites.

3.
BMC Microbiol ; 23(1): 57, 2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869296

RESUMEN

BACKGROUND: Heavy metal pollution has become a major source of environmental pollution because of increasing industrialization. Microbial remediation is a promising approach to remediate lead-contaminated environments owing to its cost-effective, environment-friendly, ecologically sustainable, and highly efficient properties. In this study, the growth-promoting functions and lead-adsorption ability of Bacillus cereus SEM-15 were examined, and the functional mechanism of the strain was preliminarily identified using scanning electron microscopy, energy spectrum, infrared spectrum, and genome analyses, providing theoretical support for utilization of B. cereus SEM-15 in heavy metals remediation. RESULTS: B. cereus SEM-15 showed strong ability to dissolve inorganic phosphorus and secrete indole-3-acetic acid. The lead adsorption efficiency of the strain at lead ion concentration of 150 mg/L was more than 93%. Single factor analysis revealed the optimal conditions for heavy metal adsorption by B. cereus SEM-15 (adsorption time, initial lead ion concentration, pH, and inoculum amount were 10 min, 50-150 mg/L, 6-7, and 5 g/L, respectively) in nutrient-free environment, with the lead adsorption rate reaching 96.58%. Scanning electron microscopy of B. cereus SEM-15 cells before and after lead adsorption showed adherence of a large number of granular precipitates to the cell surface after lead adsorption. X-Ray photoelectron spectroscopy and Fourier transform infrared spectroscopy results indicated the characteristic peaks of Pb-O, Pb-O-R (R = functional group), and Pb-S bonds after lead adsorption, and a shift in the characteristic peaks of bonds and groups related to C, N, and O. Genome annotation results showed the presence of genes related to heavy metals tolerance and plant growth promotion in B. cereus SEM-15, providing a molecular basis for the strain's heavy metals tolerance and plant growth promotion functions. CONCLUSIONS: This study analyzed the lead adsorption characteristics of B. cereus SEM-15 and the associated influencing factors, and discussed the adsorption mechanism and related functional genes, providing a basis for clarifying the underlying molecular mechanism and offering a reference for further research on plant-microorganisms combined remediation of heavy metals polluted environments.


Asunto(s)
Bacillus cereus , Plomo , Adsorción , Solubilidad , Fósforo
4.
Nutrients ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36839242

RESUMEN

Chinese yam (Dioscorea opposita) tuber has a significant effect of invigorating the intestine and improving the symptoms of long-term diarrhea according to the records of the Chinese Pharmacopoeia. Phenanthrene polyphenols from Chinese yam, with higher inhibition of cyclooxygenase-2 (COX-2) than anti-inflammatory drugs, are an important material basis in alleviating ulcerative colitis via nuclear factor kappa-B (NF-κB)/COX-2 pathway, based on our previous research. The present study further explored the target and molecular mechanisms of phenanthrenes' modulation of the NF-κB/COX-2 signaling pathway by means of molecular docking and gene silencing. Firstly, interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α) expression of 6-hydroxy-2,4,7-trimethoxyphenanthrene (PC2)/6,7-dihydroxy-2,4-dimethoxyphe-nanthrene (PC4) were compared on TNF-α induced human colon adenocarcinoma (Caco-2) cells. Secondly, molecular docking and dynamics simulation were implemented for PC2/PC4 and COX-2. Finally, COX-2 silencing was performed on TNF-α induced Caco-2 cells to confirm the target of PC4 on NF-κB/COX-2 pathway. Lower expression of IL-8 and TNF-α in PC4 treated Caco-2 cells indicated that PC4 had stronger anti-inflammatory activity than PC2. The binding of PC4 and COX-2 was stronger due to the hydrogen bond between hydroxyl group and Tyr385. No significant differences were found in phosphorylation nuclear factor kappa-B inhibitor alpha (pIkBα), phosphorylation NF-κB (pNF-κB) and phosphorylation extracellular signal-regulated kinase 1/2 (pERK1/2) expression between control and PC4 group after silencing, while these protein expressions significantly decreased in PC4 group without silencing, which confirmed that COX-2 was the important target for PC4 in alleviating ulcerative colitis. These findings indicate that PC4 was supposed to have inhibited NF-κB pathway mediated inflammation via suppression of positive feedback targeting COX-2.


Asunto(s)
Adenocarcinoma , Colitis Ulcerosa , Neoplasias del Colon , Dioscorea , Humanos , FN-kappa B/metabolismo , Interleucina-8/metabolismo , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Factor de Necrosis Tumoral alfa/metabolismo , Células CACO-2 , Transducción de Señal , Antiinflamatorios/farmacología , Silenciador del Gen
5.
Foods ; 12(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36765969

RESUMEN

Akkermansia muciniphila is a common member of the human gut microbiota and belongs to the phylum Verrucomicrobia. Decreased levels of A. muciniphila are associated with many diseases, so it is thought to be a beneficial resident of the intestinal mucosal layer. In this study, we found that different prebiotics promoted the proliferation of A. muciniphila, and mulberry galacto-oligosaccharide (MGO) had the greatest effect. We cultured A. muciniphila in a brian heart infusion (BHI) medium containing 5% galactooligosaccharides (GOS), mulberry polysaccharide solution (MPS), and MGO, and transcriptomic analyses were performed. The results revealed that, after 6 days of cultivation, the numbers of upregulated functional genes (based on Gene Ontology) were approximately 0.7 and 19% higher with MPS and MGO, respectively, than with GOS. Analysis using the Kyoto Encyclopedia of Genes and Genomes showed that, when A. muciniphila was cultured with MGO, genes that were upregulated were enriched in the carbohydrate metabolism, the metabolism of cofactors and vitamins, the energy metabolism, the amino acid metabolism, and the lipid metabolism. Upregulated genes included galM and pfkA in the galactose metabolism, and pgi, pfk, fbaA, tpiA, gapA, pgk, gpml, eno, pyk, and lpd in the glycolysis/gluconeogenesis pathway. Real-time quantitative PCR results were consistent with the RNA-Seq data. This work provides valuable knowledge which can be available for the functional application of A. muciniphila and MGO.

6.
Foods ; 11(23)2022 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-36496612

RESUMEN

Applying the intermolecular co-pigmentation to improve the stability of mulberry anthocyanins is an important co-pigment method. Seven co-pigments, ferulic acid (FA), caffeic acid (CA), p-hydroxybenzoic acid (HBA), protocatechuic acid (PA), gallic acid (GA), vanillic acid (VA) and vanillin (VN) were selected to investigate mulberry anthocyanin co-pigmentation thermal reaction kinetics. The strongest co-pigment reactions were observed for FA at a molar ratio of 1:20, pH 3.5 and 20 °C, with the highest hyperchromic effects (52.94%), equilibrium constant (K) values (3.51) and negative values of Gibbs free energy (ΔG°) (-3.06 KJ/mol). Co-pigments that contained more free hydroxyl groups facilitated the co-pigmentation, and methyl contributed more to color enhancement, with respect to the hydrogen group. Ultra Performance Liquid Chromatography-Quadrupole-Time Of Flight-Mass/Mass Spectrometry (UPLC-Q-TOF-MS/MS) results indicated that FA and CA formed different anthocyanin derivatives with mulberry anthocyanin. The Fourier Transform Infrared Spectroscopy (FTIR) and molecular docking confirmed that hydrogen bonding, π-π stacking and hydrophobic interaction were formed between anthocyanins and three prevalent co-pigments (FA, CA and VA). CA and C3G could form four hydrogen bonds and two π-π stackings; this was the most stable system among three phenolic acid-C3G complexes. Due to the functional effect of phenolic acids, the addition of FA and CA not only enhanced the stability and color intensity of mulberry anthocyanins but also the functionality of the processing product.

7.
Foods ; 11(24)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36553716

RESUMEN

The effects of natural and synthetic galactooligosaccharides (GOS) on inflammation were explored by investigating the structure-activity relationship between the degree of GOS polymerization and in vitro anti-inflammatory activity, together with the potential underlying mechanism of their anti-inflammatory effects. The results demonstrated that GOS had strong anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 macrophages, including the inhibition of nitric oxide production and the reduced expression of pro-inflammatory mediators (interleukin-1ß, interleukin-6, and tumor necrosis factor α), induced nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), and proteins related to the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway. GOS4, which has the highest degree of polymerization, exerted the strongest anti-inflammatory activity among the GOS examined. More importantly, our findings confirmed the anti-inflammatory effects of GOS on RAW264.7 macrophages via the TLR4/NF-κB pathway. Our experimental results could provide further support for the exploration of GOS in human nutrition and health.

8.
Foods ; 11(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35954133

RESUMEN

The proliferation inhibition effects of the hydrolysates from silkworm pupa proteins on MGC-803 gastric cancer cells were investigated in this study. The specific morphological changes (cell membrane, cell nucleus and cytoskeleton) of cells were measured. In vitro, the proliferation of MGC-803 cells was inhibited by silkworm pupa protein hydrolysates (SPPHs) in a dose-dependent manner. The flow cytometry analysis showed that the blocking effect of SPPHs on the MGC-803 cells was mainly in the G0/G1-phase. The morphological changes, disintegration of the cytoskeleton and retardant cell cycles were probably related to the activation of apoptosis. Thus, SPPHs could be promising as a chemopreventive agent due to their ability to promote apoptosis of tumor cells.

9.
J Food Biochem ; 46(10): e14270, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35702955

RESUMEN

The effective components of mulberry leaf polyphenols (MLPs) should be absorbed and transported by the intestinal cells before regulating lipid metabolism. The Caco-2 intestinal epithelial cell and 3 T3-L1 adipocytes were coupled to screen the effective components of MLPs that are being absorbed and transported by intestinal cells. The regulation and molecular mechanism by which the effective components affect adipogenesis were analyzed in this study. Among the 12 main components identified, five main compounds were well absorbed with Papp in the order of benzoic acid > chlorogenic acid > astragaloside > hyperoside > rutin. Chlorogenic acid and benzoic acid were mainly absorbed through passive diffusion, while rutin, astragaloside, and hyperoside were mainly by active transport, of which chlorogenic and rutin absorption were mediated by the efflux protein, P-glycoprotein (P-pg). Based on the transport volume of 2 mg/ml MLPs within 2 h, 25% of the maximum transported MLPs (TMLPs) was a safe concentration for 3 T3-L1 preadipocytes. Except for astragaloside, the other four components showed a significant inhibitory effect on lipid droplets, TG and TC, and chlorogenic acid and benzoic acid had the strongest effect. Additionally, we observed a synergistic effect as TMLPs were the most effective. We hypothesized that TMLPs, chlorogenic acid and benzoic acid suppressed adipogenesis and regulated lipid metabolism by inhibiting PPAR-γ, C/EBP-α, and FAS mRNA while promoting ADIPO and Leptin mRNA expression. PRACTICAL APPLICATIONS: The absorption and adipogenesis inhibition effect of mulberry leaf phenolics were evaluated in this study. The results provided guideline for the development of functional foods in regulating lipid metabolism.


Asunto(s)
Adipogénesis , Morus , Células 3T3-L1 , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/farmacología , Animales , Ácido Benzoico/farmacología , Células CACO-2 , Ácido Clorogénico/farmacología , Humanos , Leptina/genética , Leptina/metabolismo , Leptina/farmacología , Ratones , Morus/genética , Morus/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Hojas de la Planta/metabolismo , Polifenoles/farmacología , ARN Mensajero/genética , Rutina/farmacología , Transducción de Señal
10.
Food Chem ; 391: 133201, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35609461

RESUMEN

This study developed an alpha-linolenic acid (ALA) supplement with emulsion form using ALA-rich diacylglycerol (ALA-DAG) and ALA-DAG stearin (DAG-SF) as a new source of ALA and emulsifier. Stable, commercial surfactant-free W/O emulsions with 90 wt% oil phase (including DAG-SF and ALA-DAG with 10:90 - 20:80 wt ratio) was fabricated. Microstructure and Raman spectra revealed that the compact crystal networks and high amounts of solid acyl chains were responsible for high emulsion stability. These emulsions exhibited good potential in improving the ALA nutritional status (with ALA release level of 60.49% - 62.98%). Furthermore, the emulsifier-to-oil ratio greatly impacted the emulsion texture (solid-like or liquid-like) and emulsions showed great oxidation stability (2.80 - 3.09 meq/kg lipid of peroxide value at 6th week). The tunable texture and high oxidation stability make this emulsion system useful for a wide range of food products. This developed emulsion system could provide valuable information for other important fatty acids supplement.


Asunto(s)
Diglicéridos , Ácido alfa-Linolénico , Digestión , Diglicéridos/química , Emulsionantes , Emulsiones/química , Agua/química
11.
Food Funct ; 13(9): 5287-5298, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35441628

RESUMEN

The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-ß-Glcp-1 → 4-ß-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-ß-Galp-1 → 2-ß-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.


Asunto(s)
Morus , Prebióticos , Glucosa , Oligosacáridos/metabolismo , Hojas de la Planta/metabolismo
12.
Front Nutr ; 9: 853271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369065

RESUMEN

Lactobacillus rhamnosus GG (LGG) has strong acid resistance and can survive passing through the stomach to colonize the intestines, where it promotes the growth of beneficial bacteria. Prebiotics such as mulberry galacto-oligosaccharide (MGO), mulberry polysaccharide solution (MPS), and galactooligosaccharides (GOS) promote LGG proliferation, and MGO has the greatest effect. After culturing LGG with prebiotics, changes in gene expression were studied at the transcriptomic and metabolomic levels. The results showed that, in the stable 24-h growth period of cultivation, ~63 and 132% more differential genes were found after MPS and MGO were added to the MRS medium, respectively, than after GOS was added, and the numbers of up-regulated genes were about 18 and 66% higher with MPS and MGO, respectively, than GOS. Analysis using the KEGG database revealed that, when LGG was cultured with MGO, 120 genes that were up-regulated as the growth rate increased were mainly enriched in pathways such as membrane transport, amino acid metabolism, and carbohydrate metabolism. The genes gatB and gatC were up-regulated for galactose metabolism, and bglA was up-regulated in the glycolysis/gluconeogenesis pathway. The qRT-RCR results, which were in agreement with the RNA-seq, indicated the genes involved in the proliferation effect of LGG were up-regulated. UDP-glucose may be a key metabolite for MGO to promote LGG proliferation.

13.
Parasitol Res ; 121(1): 453-460, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34993633

RESUMEN

Pebrine disease is caused by microporidia (Nosema bombycis) and is destructive to sericulture production. A carbendazim-based drug FangWeiLing (FWL) has a significant control effect on the disease, which is a successful example of drug treatment of microsporidia. In this study, the therapeutic effect and critical action time of FWL were investigated by silkworm rearing biological test. Besides, the hemolymph samples from silkworms in the control group, model group, and FWL group were analyzed by metabonomics based on gas chromatography-mass spectrometry (GC/MS). The results showed that FWL had a significant therapeutic effect on pebrine disease, and the critical action time was 24 ~ 48 h post inoculation. Forty-seven different metabolites related to pebrine disease were screened out, and correlated with starch and sucrose metabolism; aminoacyl-tRNA biosynthesis; arginine biosynthesis; glycine, serine, and threonine metabolism; and phenylalanine, tyrosine, and tryptophan biosynthesis. After pretreatment with FWL, the metabolites were all effectively regulated, indicating productive intervention. Principal component analysis (PCA) also showed that the overall metabolic profile of the FWL group tended toward the control group. Compared with the control group, 16 different metabolites were obtained from the hemolymph of B.mori in FWL group, mainly involving aminoacyl-tRNA biosynthesis and taurine and hypotaurine metabolism. It indicated that FWL had some effect on silkworm metabolism, which might be related to the decrease in cocoon quality. In conclusion, combined with the life cycle of N. bombycis, the mechanism of carbendazim in the treatment of pebrine disease can be fully revealed. Carbendazim can effectively reduce the destruction of amino acid metabolism and carbohydrate metabolism by N. Bombycis infection by inhibiting the proliferation of the meronts in silkworms, thus maintaining the normal physiological state of B. mori and achieve therapeutic effects. GC/MS-based metabonomics is a valuable and promising strategy to understand the disease mechanism and drug treatment of pebrine disease.


Asunto(s)
Bombyx , Microsporidiosis , Nosema , Animales , Bencimidazoles , Carbamatos , Cromatografía de Gases y Espectrometría de Masas , Metabolómica
14.
Nat Prod Res ; 36(22): 5894-5898, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34986725

RESUMEN

Prenylated flavonoids show antibacterial activity towards Staphylococcus aureus (S. aureus). Previous studies have suggested that the prenyl side-chain is an important active group for antimicrobial activity. However, prenylated flavonoids also often contain a pyran ring isopentene group. Few studies have explored the contribution of the pyran ring isopentene group to antibacterial activity. In this study, the antibacterial activities of structurally related flavonoid compounds from mulberry root bark were studied by detecting the minimum inhibitory concentration (MIC) and colony counting. These flavonoid compounds all exhibited antibacterial activities against S. aureus ATCC6538, S. aureus ATCC25923 and methicillin-resistant S. aureus (MRSA) ATCC43300 with MIC values of 7.3-248.2 µmol/L, 7.3-330.9 µmol/L, and 7.3-330.9 µmol/L, respectively. Structure-activity relationship analyses demonstrated that the pyran ring isopentene group plays an important role in antibacterial activity. Thus, the pyran ring isopentene group is an overlooked antimicrobial active group in prenylated flavonoids.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Flavonoides/farmacología , Staphylococcus aureus , Piranos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
15.
Appl Biochem Biotechnol ; 194(3): 1290-1302, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34677760

RESUMEN

More and more industries demand environmental friendliness. Silkworm pupae oil (SPO), extracted from the desilked silkworm pupae, can serve as a promising substrate alternative to use in plasticization. This study aimed to prepare epoxidized silkworm pupae oil (ESPO) and investigate their effects on the thermal stability and plasticization of polyvinyl chloride (PVC) films. A chemo-enzymatic method of ESPO was developed in the presence of Lipase SMG1-F278N and H2O2 in natural deep eutectic solvents (DESs). Lipase SMG1-F278N could initiate the epoxidation reaction effectively at room temperature with a negligible loss of activities 10 batches. A maximum oxirane value of 6.94% was obtained. The formation of oxirane ring in ESPO was confirmed by FTIR and 13C NMR spectra. Moreover, ESPO showed a better thermal stability and lower freezing point than epoxidized soybean oil (ESO). It was demonstrated that ESPO had a good frost resistance. In addition, ESPO showed a significantly improved plasticizing effect on flexible polyvinyl chloride (PVC). Compared with ESO, ESPO could increase the tensile elongation at break effectively. A significantly lower migration rate of plasticizer was observed in PVC plasticized with ESPO.


Asunto(s)
Cloruro de Polivinilo
16.
Bioresour Technol ; 345: 126541, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34910970

RESUMEN

Two biosafety strains, identified as Pseudomonas mendocina S16 and Enterobacter cloacae DS'5, were isolated from freshwater aquaculture ponds and showed significant heterotrophic nitrification-aerobic denitrification abilities. Within 48 h, the inorganic nitrogen removal efficiencies in the two strains were 66.59 %-97.97 % (S16) and 72.27 %-96.44 % (DS'5). The optimal conditions for organic nitrogen removal of the two strains were temperature 20-35 °C and carbon/nitrogen (C/N) ratio 10-20 while using sodium citrate as the carbon source. Sequence amplification demonstrated the presence of the denitrification genes in both the two strains, and quantitative real-time PCR results showed that the coupled expression of nap + nar would improve the nitrate removal rate in S16. The nitrogen removal efficiencies of the two strains in immobilization culture systems were 79.80 %-98.58 % (S16) and 60.80 %-98.40 % (DS'5). This study indicated the great potential application of the two strains in aquaculture tail water treatment.


Asunto(s)
Pseudomonas mendocina , Aguas Residuales , Aerobiosis , Acuicultura , Bacterias , Desnitrificación , Enterobacter cloacae/genética , Procesos Heterotróficos , Nitrificación , Nitritos , Nitrógeno , Estanques
17.
J Agric Food Chem ; 69(45): 13628-13636, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34739242

RESUMEN

Cinnamaldehyde is a natural antimicrobial food preservative. Previous studies have suggested that cinnamaldehyde interacts with the cell membrane, but the molecular targets of cinnamaldehyde action on foodborne pathogens are still unclear. In this study, the structural changes of Staphylococcus aureus and Escherichia coli cells were observed after cinnamaldehyde treatment. Then, quantitative real-time polymerase chain reaction (PCR) and parallel reaction monitoring were used for determining the effects of cinnamaldehyde treatment of these bacteria on the expression of genes and proteins associated with glycerophospholipid biosynthesis. Changes in fatty acids (raw materials for the biosynthesis of glycerophospholipids) and glycerophospholipids in S. aureus and E. coli after cinnamaldehyde treatment were analyzed to confirm the results of gene and protein expression experiments. Cinnamaldehyde regulated the glycerophospholipid biosynthesis pathways of these foodborne pathogens, mainly targeting phosphatidylglycerol and phosphatidylethanolamine, which resulted in the disruption of cell membrane integrity.


Asunto(s)
Antiinfecciosos , Staphylococcus aureus , Acroleína/análogos & derivados , Acroleína/farmacología , Antibacterianos/farmacología , Escherichia coli/genética , Fosfatidiletanolaminas , Fosfatidilgliceroles
18.
Food Sci Nutr ; 9(7): 3641-3654, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34262724

RESUMEN

Mulberry has significant hypoglycemic effect and can be used as an auxiliary food for people with type 2 diabetes. However, it is rich in carbohydrate and cannot be consumed directly by diabetic patients. In the study, we fermented the mulberry to reduce the content of glucose and fructose, and added the soybean to reduce the loss of probiotics during fermentation and then determined its hypoglycemic effect. We induced type 2 diabetes mellitus (T2DM) mice by streptozotocin and measured its blood glucose, serum biochemistry, hepatic and pancreatic histopathology, and the diversity of the gut microbiota. After 5 weeks of oral DFMS administration, the glucose tolerance was improved significantly in T2DM mice. Furthermore, there were also significant increases in superoxide dismutase activity and glutathione concentration, and marked reductions in the concentrations of malondialdehyde and free fatty acids. Moreover, DFMS also prevented histopathological changes and the increases in the activities of alanine transaminase and aspartate transaminase. DFMS treatment also markedly increased the richness of the gut microbial community. The abundance of Bacteroidetes was increased, and those of Proteobacteria, Escherichia-Shigella, and Lactobacillus were reduced. In summary, DFMS has a clear hypoglycemic effect in mice with T2DM.

19.
Food Chem ; 355: 129608, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33799260

RESUMEN

Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide (MLP) were characterized in this study. The enzymatic hydrolysis of MLP raised the carbonyl, carboxyl, and hydroxyl groups from 7.21 ± 0.86 to 10.08 ± 0.28 CO/100 Glu, 9.40 ± 0.13 to 17.55 ± 0.34 COOH/100 Glu, and 5.71 ± 0.33 to 8.14 ± 0.24 OH/100 Glu, respectively. Meanwhile, an increase in thixotropic performance and structure-recovery capacities were observed in hydrolyzed MLP, while the molecular weight, surface tension, apparent viscosity, and thermal stability were decreased. An improved antioxidant activity of MLP was also achieved after the enzymatic degradation. Moreover, the hydrolyzed MLP showed greater ability to promote the growths of Bifidobacterium bifidum, Bifidobacterium adolescentis, Lactobacillus rhamnosus, and Lactobacillus acidophilus and the production of acetic acid, butyric acid, and lactic acid. The results demonstrate that enzymatic modification is a useful approach for polysaccharide processing.


Asunto(s)
Glicósido Hidrolasas/metabolismo , Morus/química , Morus/metabolismo , Polisacáridos/química , Antioxidantes/química , Bifidobacterium/efectos de los fármacos , Bifidobacterium/crecimiento & desarrollo , Hidrólisis , Lactobacillus/efectos de los fármacos , Lactobacillus/crecimiento & desarrollo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Polisacáridos/metabolismo , Polisacáridos/farmacología , Prebióticos , Reología , Viscosidad
20.
J Agric Food Chem ; 69(16): 4720-4731, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33760601

RESUMEN

In this study, we evaluated the protective effect and molecular mechanism of a dominant phenanthrene, (6,7-dihydroxy-2,4-dimethoxyphenanthrene, CYP4), from Chinese yam peels on intestinal epithelial integrity. Three doses of Chinese yam phenolic extract (CYPE) and Chinese yam phenanthrene 4 (CYP4) were administered to BALB/c mice for 7 days before dextran sulfate sodium (DSS) treatment, with berberine hydrochloride as a positive control (PC). Results showed that both disease activity indexes (DAIs), histological damage score (HDS) and survival rate in DSS mice, were improved with preintervention of CYPE and CYP4, which exhibited better efficiency than PC. Further studies showed that administration of CYP4 downregulated the oxidative stress-associated factors, MPO and NO, and improved tight junction protein occludin. Besides, the CYP4 treatment substantially downregulated the caspase-3 expression and the apoptosis rate of intestinal epithelial cells. In addition, the CYP4 treatment ameliorated the production of inflammatory cytokines including TNF-α, IFN-γ, IL-10, and IL-23 in the colon. Furthermore, the protein expression of ERK1/2, NF-κB p65, pNF-κB, and COX-2 was suppressed in CYE4 groups as compared with that in model control (MC). These findings suggested that CHP4 could effectively inhibit the activation of NF-κB/COX-2 in an experimental UC model in vivo. It was demonstrated for the first time that CYPE and CYP4 protected intestinal mucosa from damage and prevented DSS-induced colitis in mice. CYP4 was one of the active principles obligatory for the biological effect of Chinese yam in protecting intestinal health. These findings indicated that CYP4 might be a promising and useful approach for treatment of UC in humans.


Asunto(s)
Colitis Ulcerosa , Colitis , Dioscorea , Animales , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/genética , Colon/metabolismo , Ciclooxigenasa 2/genética , Sulfato de Dextran , Dioscorea/metabolismo , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...