Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small Methods ; : e2400256, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38708816

RESUMEN

Nickel (Ni)-rich cathodes are among the most promising cathode materials of lithium batteries, ascribed to their high-power density, cost-effectiveness, and eco-friendliness, having extensive applications from portable electronics to electric vehicles and national grids. They can boost the wide implementation of renewable energies and thereby contribute to carbon neutrality and achieving sustainable prosperity in the modern society. Nevertheless, these cathodes suffer from significant technical challenges, leading to poor cycling performance and safety risks. The underlying mechanisms are residual lithium compounds, uncontrolled lithium/nickel cation mixing, severe interface reactions, irreversible phase transition, anisotropic internal stress, and microcracking. Notably, they have become more serious with increasing Ni content and have been impeding the widespread commercial applications of Ni-rich cathodes. Various strategies have been developed to tackle these issues, such as elemental doping, adding electrolyte additives, and surface coating. Surface coating has been a facile and effective route and has been investigated widely among them. Of numerous surface coating materials, have recently emerged as highly attractive options due to their high lithium-ion conductivity. In this review, a thorough and comprehensive review of lithium-ion conductive coatings (LCCs) are made, aimed at probing their underlying mechanisms for improved cell performance and stimulating new research efforts.

2.
Small ; 20(25): e2310491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38189624

RESUMEN

Single-atom metal-doped M-N-C (M═Fe, Co, Mn, or Ni) catalysts exhibit excellent catalytic activity toward oxygen reduction reactions (ORR). However, their performance still has a large gap considering the demand for their practical applications. This study reports a high-performance dual single-atom doped carbon catalyst (HfCo-N-C), which is prepared by pyrolyzing Co and Hf co-doped ZIF-8 . Co and Hf are atomically dispersed in the carbon framework and coordinated with N to form Co-N4 and Hf-N4 active moieties. The synergetic effect between Co-N4 and Hf-N4 significantly enhance the catalytic activity and durability of the catalyst. In an acidic medium, the ORR half-wave potential (E1/2) of the catalyst is up to 0.82 V , which is much higher than that of the Co-N-C catalyst without Hf co-doping (0.80 V). The kinetic current density of the catalyst is up to 2.49 A cm-2 at 0.85 V , which is 1.74 times that of the Co-N-C catalyst without Hf co-doping. Moreover, the catalyst exhibits excellent cathodic performance in single proton exchange membrane fuel cells and Zn-air batteries. Furthermore, Hf co-doping can effectively suppress the formation of H2O2, resulting in significantly improved stability and durability.

3.
Small ; 20(12): e2307011, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946683

RESUMEN

It is crucial to rationally design and synthesize atomic-scale transition metal-doped carbon catalysts with high electrocatalytic activity to achieve a high-efficient oxygen reduction reaction (ORR). Herein, an electrocatalyst comprised of Fe-Fe dual atom pairs and N-doped concave carbon are reported (N-CC@Fe DA) that achieves ultrahigh electrocatalytic ORR activity. The catalyst is prepared by a gaseous doping approach, with zeolitic imidazolate framework-8 (ZIF-8) as the carbon framework precursor and cyclopentadienyliron dicarbonyl dimer as the Fe-Fe atom pair precursor. The catalyst exhibits high cathodic ORR catalytic performance in an alkaline Zn/air battery and proton exchange membrane fuel cell (PEMFC), yielding peak power densities of 241 mW cm-2 and 724 mW cm-2, respectively, compared to 127 mW cm-2 and 1.20 W cm-2 with conventional Pt/C catalysts as cathodes. The presence of Fe atom pairs coordinate with N atoms is revealed by X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) analysis, and Density Functional Theory (DFT) calculation results show that the Fe-Fe pair structure is beneficial for adsorbing oxygen molecules, activating the O─O bond, and desorbing OH* intermediates formed during oxygen reduction, resulting in a more efficient oxygen reaction. The findings may provide a new pathway for preparing ultra-high-performance doped carbon catalysts with Fe-Fe atom pair structures.

4.
Nano Lett ; 23(11): 5187-5193, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37276263

RESUMEN

Intermetallic compounds, featuring atomically ordered structures, have emerged as a class of promising electrocatalysts for fuel cells. However, it remains a formidable challenge to controllably synthesize Pt-based intermetallics during the essential high-temperature annealing process as well as stabilize the nanoparticles (NPs) during the electrocatalytic process. Herein, we demonstrated a Ketjen black supported intermetallic Pt3Ti nanocatalyst coupled with amorphous TiOx species (Pt3Ti-TiOx/KB). The TiOx can not only confine Pt3Ti NPs during the synthesis and electrocatalytic process by a strong metal-oxide interaction but also promote the water dissociation for generating more OH species, thus facilitating the conversion of COad. The Pt3Ti-TiOx/KB showed a significantly enhanced mass activity (2.15 A mgPt-1) for the methanol oxidation reaction, compared with Pt3Ti/KB and Pt/C, and presented an impressively high mass activity retention (∼71%) after the durability test. This work provides an effective strategy of coupling Pt-based intermetallics with functional oxides for developing highly performed electrocatalysts.

5.
Small ; 19(37): e2301337, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37144456

RESUMEN

The development of low platinum-based alloy electrocatalysts is crucial to accelerate the commercialization of fuel cells, yet remains a synthetic challenge and an incompatibility between activity and stability. Herein, a facile procedure to fabricate a high-performance composite that comprises Pt-Co intermetallic nanoparticles (IMNs) and Co, N co-doped carbon (Co-N-C) electrocatalyst is proposed. It is prepared by direct annealing of homemade carbon black-supported Pt nanoparticles (Pt/KB) covered with a Co-phenanthroline complex. During this process, most of Co atoms in the complex are alloyed with Pt to form ordered Pt-Co IMNs, while some Co atoms are atomically dispersed and doped in the framework of superthin carbon layer derived from phenanthroline, which is coordinated with N to form Co-Nx moieties. Moreover, the Co-N-C film obtained from complex is observed to cover the surface of Pt-Co IMNs, which prevent the dissolution and agglomeration of nanoparticles. The composite catalyst exhibits high activity and stability toward oxygen reduction reactions (ORR) and methanol oxidation reactions (MOR), delivering outstanding mass activities of 1.96 and 2.92 A mgPt -1 for ORR and MOR respectively, owing to the synergistic effect of Pt-Co IMNs and Co-N-C film. This study may provide a promising strategy to improve the electrocatalytic performance of Pt-based catalysts.

6.
Small ; 19(9): e2206702, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36513389

RESUMEN

2D materials have captured much recent research interest in a broad range of areas, including electronics, biology, sensors, energy storage, and others. In particular, preparing 2D nanosheets with high quality and high yield is crucial for the important applications in energy storage and conversion. Compared with other prevailing synthetic strategies, the electrochemical exfoliation of layered starting materials is regarded as one of the most promising and convenient methods for the large-scale production of uniform 2D nanosheets. Here, recent developments in electrochemical delamination are reviewed, including protocols, categories, principles, and operating conditions. State-of-the-art methods for obtaining 2D materials with small numbers of layers-including graphene, black phosphorene, transition metal dichalcogenides and MXene-are also summarized and discussed in detail. The applications of electrochemically exfoliated 2D materials in energy storage and conversion are systematically reviewed. Drawing upon current progress, perspectives on emerging trends, existing challenges, and future research directions of electrochemical delamination are also offered.

7.
J Colloid Interface Sci ; 634: 940-948, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36571856

RESUMEN

Improving the activity and durability of carbon-based catalysts is a key challenge for their application in fuel cells. Herein, we report a highly active and durable Co/N co-doped carbon (CoNC) catalyst prepared via pyrolysis of Co-doped zeolitic-imidazolate framework-8 (ZIF-8), which was synthesized by controlling the feeding sequence to enable Co to replace Zn in the metal-organic framework (MOF). The catalyst exhibited excellent oxygen reduction reaction (ORR) performance, while the half-wave potential decreased by only 8 mV after 5,000 accelerated stress test (AST) cycles in an acidic solution. Furthermore, the catalyst exhibited satisfactory cathodic catalytic performance when utilized in a hydrogen/oxygen single proton exchange membrane (PEM) fuel cell and a Zn-air battery, yielding maximum power densities of 530 and 164 mW cm-2, respectively. X-ray absorption spectroscopy (XAS) and high-angle annular dark field-scanning transmission electron microscopy (HAAD-STEM) analyses revealed that Co was present in the catalyst as single atoms coordinated with N to form Co-N moieties, which results in the high catalytic performance. These results show that the reported catalyst is a promising material for inclusion into future fuel cell designs.

8.
Nanomaterials (Basel) ; 12(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36234417

RESUMEN

In this study, the magnetohydrodynamic (MHD) flow and heat transfer of a Casson fluid over an exponentially shrinking sheet with suction is investigated using the homotopy analysis method (HAM). Different from previous numerical methods and analytical techniques, we have obtained an explicit formula solution to the presented nonlinear problem. The explicit solutions of f(η) and θ(η) are obtained and are valid in the whole domain. The changes in velocity and temperature profiles are studied in cases of different Casson fluid parameter γ, magnetic interaction parameter M, suction parameter s, and Prandtl number Pr. The convergent solutions are verified by comparison with the numerical results. In addition, the skin friction coefficient Cf and local Nusselt number Nux are analyzed using the analytic formulas of f″(0) and θ'(0), respectively. The analytical formulas help us intuitively analyze the influence of various parameters at the theoretical level. The effects of different physical quantities on Cf and Nux are thoroughly investigated.

9.
Molecules ; 27(7)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35408499

RESUMEN

Lithium-rich manganese-based layered cathode materials are considered to be one of the best options for next-generation lithium-ion batteries, owing to their ultra-high specific capacity (>250 mAh·g−1) and platform voltage. However, their poor cycling stability, caused by the release of lattice oxygen as well as the electrode/electrolyte side reactions accompanying complex phase transformation, makes it difficult to use this material in practical applications. In this work, we suggest a molybdenum surface modification strategy to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2. The Mo-modified Li1.2Mn0.54Ni0.13Co0.13O2 material exhibits an enhanced discharge specific capacity of up to 290.5 mAh·g−1 (20 mA·g−1) and a capacity retention rate of 82% (300 cycles at 200 mA·g−1), compared with 261.2 mAh·g−1 and a 70% retention rate for the material without Mo modification. The significantly enhanced performance of the modified material can be ascribed to the formation of a Mo-compound-involved nanolayer on the surface of the materials, which effectively lessens the electrolyte corrosion of the cathode, as well as the activation of Mo6+ towards Ni2+/Ni4+ redox couples and the pre-activation of a Mo compound. This study offers a facile and effective strategy to address the poor cyclability of lithium-rich manganese-based layered cathode materials.

10.
Gland Surg ; 10(9): 2695-2704, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34733719

RESUMEN

BACKGROUND: This study sought to examine the suppression of the NK4 (which is a fragment that originates from the trypsin digestion of the hepatocyte growth factor) gene as mediated by new nano material polyamidoamine (PAMAM) dendrimers in the growth of breast cancer cells MDA-MB-231 and MCF-7, and the therapeutic effects in a nude mice model of transplanted tumor cell MDA-MB-231. METHODS: We built PAMAM-NK4 nano particles and detected the in vitro transfection rate. Nano complexes and blank plasmid PAMAM dendrimers were transfected to MDA-MB-231 and MCF-7 cells, respectively. The western-blotting method, MTT experiment method, and bead method were used to detect the effects of the nano complexes on NK4 protein expression, cell proliferation, and cell apoptosis. The nude mice model of transplanted tumor cell MDA-MB-231 comprised 40 nude female mice who were subject to injections. The mice were randomly divided into four groups, comprising 10 mice per group. The control, blank plasmid and treatment groups were subcutaneously injected with 0.2 mL of 0.9% NaCl (Sodium chloride) solution, 0.2 mL of plasmid solution (including 100 µg PAMAM pcDNA3.1(-) blank plasmid nano complexes) and 0.2 mL of plasmid solution (including PAMAM-NK4 100 µg) beside the tumor inoculation spot, respectively. The positive control group was intraperitoneally injected with 0.2 mL of doxorubicin solution, including 100 µg doxorubicin. Western blotting was used to detect the NK4 protein expression of the transplanted tumor tissues of the various groups. RESULTS: NK4 protein was successfully expressed in MDA-MB-231 and MCF-7 cells transfected with PAMAM-NK4 nano particles, and cell proliferation was suppressed and cell apoptosis was induced. The tumor volumes and masses of the treatment and positive control groups were obviously smaller than those of the control group. The differences were statistically significant (P<0.05). The treatment group had an obviously higher mean value of NK4 protein expression than the control group. The differences were statistically significant (P<0.05). CONCLUSIONS: PAMAM-NK4 nano complexes suppress the growth of the breast cancer cells MDA-MB-231 and MCF-7, and had a treatment effect on this tumor nude mice model of breast cancer cells.

11.
ACS Appl Mater Interfaces ; 13(27): 31725-31732, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34213908

RESUMEN

Finding a highly efficient catalyst for proton exchange membrane fuel cells is still the subject of extensive research. This article describes heterostructured Pd/Ti/Pd bimetallic thin films prepared using a strain-release technology as electrocatalysts for fuel cells. With their particular structure, these materials exhibit intriguing electrocatalytic activity toward the oxidation of both methanol and formic acid, yielding current densities of 0.17 and 0.56 A mg-1Pd, much superior to that of the commercial Pd black catalyst. Moreover, the Pd/Ti/Pd thin films display a low onset oxidation potential and extremely high current retention in both acidic and alkaline media. The carbon monoxide poisoning resistance is also significantly enhanced, thus contributing to ultrahigh stability in the long-term electrocatalytic processes. Their encouraging performance implies that such composites could be potential materials for energy conversion in the fuel cell field.

12.
Phys Rev E ; 103(2-1): 023206, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33736054

RESUMEN

The combined effects of external electric, magnetic, and Aharonov-Bohm (AB) flux fields on the two-dimensional hydrogen atom embedded in both Debye and quantum plasmas modeled by the more general exponential cosine Coulomb (MGECSC) potential are investigated using the general analytic approach, namely the homotopy analysis method (HAM). The analytical convergent solutions are obtained for the ground state as well as excited states at both weak and strong intensity of the external fields. The influence of the screening parameters on the quantum levels are exhaustively explored in the presence of three external fields. It is worth emphasizing that our analytical HAM results have 4-10 digits of accuracy in comparison with the numerical results. In the framework of the HAM method, there is no any small parameter different from the perturbation. Owing to this advantage, the convergent accurate solutions always can be obtained by the HAM approach even for the strong external fields. There is no limit to the value of the parameters or the strength of the external fields. It is also observed that the combined effects of the external fields play an important role on the interaction potential profile and the applied external magnetic field is the most dominant in the hydrogen atomic system. Also note that the combined effect of the fields is stronger than individual effects in both Debye and quantum plasmas. The findings obtained by the HAM-based approach in this study shed substantial light on the more complicated problems in plasmas for the atomic systems or molecular physics.

13.
J Exp Clin Cancer Res ; 40(1): 47, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33509226

RESUMEN

BACKGROUND: Phosphatidylinositol-4-phosphate-binding protein GOLPH3L is overexpressed in human ductal carcinoma of the breast, and its expression levels correlate with the prognosis of breast cancer patients. However, the roles of GOLPH3L in breast tumorigenesis remain unclear. METHODS: We assessed the expression and biological function of GOLPH3L in breast cancer by combining bioinformatic prediction, metabolomics analysis and RNA-seq to determine the GOLPH3L-related pathways involved in tumorigenesis. Dual-luciferase reporter assay and coimmunoprecipitation (Co-IP) were used to explore the expression regulation mechanism of GOLPH3L. RESULTS: We demonstrated that knockdown of GOLPH3L in human breast cancer cells significantly suppressed their proliferation, survival, and migration and suppressed tumor growth in vivo, while overexpression of GOLPH3L promoted aggressive tumorigenic activities. We found that miRNA-1185-2-3p, the expression of which is decreased in human breast cancers and is inversely correlated with the prognosis of breast cancer patients, is directly involved in suppressing the expression of GOLPH3L. Metabolomics microarray analysis and transcriptome sequencing analysis revealed that GOLPH3L promotes central carbon metabolism in breast cancer by stabilizing the p53 suppressor SERPINE1. CONCLUSIONS: In summary, we discovered a miRNA-GOLPH3L-SERPINE1 pathway that plays important roles in the metabolism of breast cancer and provides new therapeutic targets for human breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , MicroARNs/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Femenino , Genes Reporteros , Humanos , Metabolómica/métodos , Ratones , Pronóstico , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
ACS Appl Mater Interfaces ; 12(12): 13878-13887, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32155039

RESUMEN

Developing efficient non-precious-metal catalysts to accelerate the sluggish oxygen reduction reaction (ORR) is highly desired but remains a great challenge. Herein, using 2D bimetallic Zn/Fe-MOF as the precursor and g-C3N4 as the nitrogen source and stabilizer, porous carbon nanosheets doped with large amounts of single/paired Fe atoms (3.89 wt %) and N (10.28 wt %) are successfully prepared. It is found that the addition of g-C3N4 plays a key role in achieving a high loading of Fe single/paired atoms, and the 2D nanosheet structure gives the materials a high surface area and highly porous structure, resulting in outstanding ORR catalytic activity in both alkaline and acidic solutions. Our optimal sample achieved half-wave potentials in alkaline and acid media of up to 0.86 and 0.79 V (vs reversible hydrogen electrode (RHE)), respectively, values 20 mV higher than a commercial Pt/C catalyst in an alkaline medium and only 60 mV lower than Pt/C in an acidic medium. Moreover, its ORR durability was superior to that of commercial Pt/C in both electrolytes. We found that almost all the doped Fe in the sample existed as single or paired atoms coordinated with N. This work may provide an effective strategy for preparing high-performance catalysts bearing single/paired atoms by using MOFs as precursors.

15.
ACS Appl Mater Interfaces ; 12(10): 11737-11744, 2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32057234

RESUMEN

Highly active catalyst for the hydrogen oxidation/evolution reactions (HOR and HER) plays an essential role for the water-to-hydrogen reversible conversion. Currently, increasing attention has been concentrated on developing low-cost, high-activity, and long-life catalytic materials, especially for acid media due to the promise of proton exchange membrane (PEM)-based electrolyzers and polymer electrolyte fuel cells. Although non-precious-metal phosphide (NPMP) catalysts have been widely researched, their electrocatalytic activity toward HER is still not satisfactory compared to that of Pt catalysts. Herein, a series of precious-metal phosphides (PMPs) supported on graphene (rGO), including IrP2-rGO, Rh2P-rGO, RuP-rGO, and Pd3P-rGO, are prepared by a simple, facile, eco-friendly, and scalable approach. As an example, the resultant IrP2-rGO displays better HER electrocatalytic performance and longer durability than the benchmark materials of commercial Pt/C under acidic, neutral, and basic electrolytes. To attain a current density of 10 mA cm-2, IrP2-rGO shows overpotentials of 8, 51, and 13 mV in 0.5 M dilute sulfuric acid, 1.0 M phosphate-buffered saline (PBS), and 1.0 M potassium hydroxide solutions, respectively. Additionally, IrP2-rGO also exhibits exceptional HOR performance in the 0.1 M HClO4 medium. Therefore, this work offers a vital addition to the development of a number of PMPs with excellent activity toward HOR and HER.

16.
J Colloid Interface Sci ; 567: 410-418, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32086025

RESUMEN

Designing a low-cost, high-efficiency and robust doped-carbon-based oxygen reduction reaction electrocatalyst for large-scale implementations of fuel cells is highly desirable but challenging. In this work, we report a new type of hollow Fe3O4 with oxygen vacancy incorporating on mesoporous carbon prepared by pyrolyzing mesoporous carbon enriched with oxygen-containing functional groups, in combination with ferric acetylacetonate. The catalysts possess high specific surface area with predominantly mesoporous architecture and ultrahigh nitrogen content (up to 7.47 wt%). Benefiting from the integration of abundant active nitrogen and Fe-Nx species, and synergistic effect between Fe3O4 nanoparticles cooperated with oxygen vacancy and N-doped carbon, the half-wave potential of the preparing hybrid catalyst is 30 mV more positive than that of the commercial Pt/C catalyst in alkaline medium, and exhibits a high selectivity (4 e- process), and outstanding long-term stability. More importantly, the C-FePPDA-900 catalyst displays a high power density (106 mW cm-2) and specific capacity of 724 mAh gzn-1 when it is used as an air cathode catalyst in a specifically assembling Zn-air cell, superior to those of most reported catalysts.

17.
Nanomicro Lett ; 12(1): 21, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-34138058

RESUMEN

Hydrogen, a renewable and outstanding energy carrier with zero carbon dioxide emission, is regarded as the best alternative to fossil fuels. The most preferred route to large-scale production of hydrogen is by water electrolysis from the intermittent sources (e.g., wind, solar, hydro, and tidal energy). However, the efficiency of water electrolysis is very much dependent on the activity of electrocatalysts. Thus, designing high-effective, stable, and cheap materials for hydrogen evolution reaction (HER) could have a substantial impact on renewable energy technologies. Recently, single-atom catalysts (SACs) have emerged as a new frontier in catalysis science, because SACs have maximum atom-utilization efficiency and excellent catalytic reaction activity. Various synthesis methods and analytical techniques have been adopted to prepare and characterize these SACs. In this review, we discuss recent progress on SACs synthesis, characterization methods, and their catalytic applications. Particularly, we highlight their unique electrochemical characteristics toward HER. Finally, the current key challenges in SACs for HER are pointed out and some potential directions are proposed as well.

18.
RSC Adv ; 11(2): 1039-1049, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35423669

RESUMEN

As potassium is abundant and has an electronic potential similar to lithium's, potassium-ion batteries (KIBs) are considered as prospective alternatives to lithium-ion batteries (LIBs). However, the much larger radius of the K ion poses challenges for the potassiation and depotassiation processes when the typical graphite-based anode is used, resulting in poor electrochemical performance. Thus, there is an urgent need to develop novel anode materials that are suitable for K ions. Herein, we develop a porous carbon material with high surface area derived from UIO-66-NH2 metal-organic frameworks as an anode material instead of a graphite-based anode. The material is prepared using a double-solvent diffusion-pyrolysis method, which increased mesopore volume and average pore size, and to a certain extent, slightly improved the nitrogen content of the production. The material exhibits a high capacity as well as excellent rate performance and cycling stability. A potassium battery with our porous carbon as the anode delivers a high reversible capacity of 346 mA h g-1 at 100 mA g-1 (compared to 279 mA h g-1 with a graphite-based anode), and 214 mA h g-1 at a discharge rate of up to 2 A g-1. After 800 cycles, the capacity is still 187 mA h g-1 at 0.1 A g-1. Qualitative and quantitative kinetics analyses demonstrated that the battery's high K storage performance was principally dominated by a surface-driven capacitive mechanism, and the potassiation and depotassiation processes may have occurred on the surface of the porous carbon instead of in the interlayer space, as is the case with a graphite anode. This work may provide a basis for developing other carbonaceous materials to use in KIBs.

19.
ACS Appl Mater Interfaces ; 11(47): 44153-44160, 2019 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-31702126

RESUMEN

Highly efficient catalysts for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are key to the commercialization of rechargeable zinc-air batteries (ZABs). In this work, a catalyst with uniform nanospherical morphology was prepared from cobalt nitrate, acetylacetone, and hydrazine hydrate. The final catalyst possesses high ORR and OER performances, with a half-wave potential of 0.911 V [vs reversible hydrogen electrode (RHE)] for ORR and a low potential of 1.57 V (vs RHE) at 10 mA cm-2 for OER in 0.1 M KOH solution. Specially, a ZAB based on the catalyst demonstrates an ultrahigh power density of 479.1 mW cm-2, as well as excellent stability, and potential in practical applications.

20.
Nano Lett ; 19(10): 7457-7463, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31532687

RESUMEN

Perovskite oxides have attracted much attention for enabling the oxygen-evolution reaction (OER) over the past decades. Nevertheless, their poor conductivity is still a barrier hindering their use. Herein, we report a catalyst prototype of Co-based antiperovskite nitrides CuNCo3-xVx (0 ≤ x ≤ 1) to be a highly effective OER electrocatalyst. The synthesized CuNCo3-xVx exhibits greatly enhanced activity and stability toward the OER in alkaline medium. The CuNCo2.4V0.6 shows a mere 235 mV of overpotential to reach 10 mA cm-2, which is comparable to that of Ir/C (232 mV). More importantly, the CuNCo2.4V0.6 is more durable than the conventional Ir/C catalyst. The CuNCo2.4V0.6 catalyst enabled a Zn-air battery to exhibit a cycle life of 143 h with a much higher cell efficiency. The V-substituted CuNCo2.4V0.6 provides a higher content of the desirable Co3+ species in the post-OER catalyst, which ensures a high activity over a long-term operation. With these enhanced effects enabled by the compositional flexibility of CuNCo3-xVx antiperovskite nitride, a feasible strategy for optimizing an electrocatalyst with tunable properties is provided.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...