Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(9): 4553-4561, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36852749

RESUMEN

BACKGROUND: Direct-seeded rice has been developed rapidly because of labor savings. Changes in rice cultivation methods put forward new requirements for nitrogen (N) fertilizer management practices. Field experiments with five different fertilizer ratios of basal, tillering and panicle fertilizer, namely N1 (10:0:0), N2 (6:2:2), N3 (4:3:3), N4 (2:4:4) and N5 (0:5:5), were conducted to investigate the effects of different N fertilizer management practices on yield formation, N uptakes, and ammonia (NH3 ) volatilization from paddy fields in direct-seeded rice. RESULTS: The results showed that the N4 treatment improved grain yield by 5.1% while decreasing NH3 volatilization by 20.4% compared with that of conventional fertilizer treatment (N2). The panicle number per unit area was the key factor to determine the yield of direct-seeded rice (72%). Excessive N application of basal fertilizer (N1) reduced seedling emergence, N use efficiency, and yield by 45.3%, 160.6%, and 6.9% respectively and increased NH3 volatilization by 28.1% compared with that of the N4 treatment. Removal of basal N fertilizer (N5) N reduced spike number and yield by 13.0% and 6.9% respectively, minimizing NH3 volatilization while affecting the construction of high-yielding populations compared with that of the N4 treatment. CONCLUSION: Optimized N fertilizer management achieved delayed senescence (maintenance of higher leaf Soil Plant Analysis Development meter values in late reproduction), higher canopy photoassimilation (suitable leaf area), higher N fertilizer use efficiency, and less N loss (lower cumulative NH3 volatilization). © 2023 Society of Chemical Industry.


Asunto(s)
Oryza , Amoníaco/análisis , Fertilizantes/análisis , Nitrógeno/análisis , Volatilización , Suelo , Agricultura
2.
Environ Res ; 212(Pt C): 113402, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35526581

RESUMEN

The alternation of dry and wet is an important environmental factor affecting the emission of nitrous oxide from soil. However, the consistent or opposite effects on NH3 and N2O emissions caused by adding exogenous urea in this process have not been fully considered. Here, we controlled the initial (slow drying) and final (adding water) water-filled pore space (WFPS) at 70%, 60%, or 50% through microculture experiment to simulate a process of slow drying-fertilization and rapid wetting of the soil from rice harvest to dryland crop fertilization. Through measuring soil chemical properties and the abundance and composition of related microbial communities during drying process, we studied the pathways of influence of drying and rewetting on the emission of N2O and NH3 after urea application. During the progressive drying process (WFPS decreasing from 70% to 60% and 50%), soil N2O and NH3 emissions decreased by 49.77%-72.13% and 17.89%-42.19%, respectively. After rapid rewetting (WFPS increasing from 60% to 70%, 50%-60% and 70%), N2O emissions showed a slight increase, while NH3 volatilization continued to decrease. Soil NH4+-N and DOC contents both decreased during progressive drying, while the soil NO3--N content was enhanced. The drying process changed the community structure of ureC and amoA-b and reduced their abundance but had no effect on amoA-a, nirK or nirS. Correlation analysis indicated that the reductions in NH4+-N content and the abundances of ureC and amoA-b were the main factors suppressing N2O and NH3 emissions. We believe that drying process limits the related microbial activity and substrate supply during ammonia oxidation process in terms of N2O emissions, while in terms of NH3 volatilization, it reduces the related microbial activity of urea hydrolysis process and increases the ammonium adsorption to the soil.


Asunto(s)
Fertilizantes , Suelo , Agricultura , Amoníaco/análisis , Fertilizantes/análisis , Óxido Nitroso , Suelo/química , Urea/química , Urea/metabolismo , Volatilización , Agua/análisis
3.
Environ Sci Pollut Res Int ; 29(17): 25296-25307, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34839441

RESUMEN

Paddy-upland rotation and/or straw return could improve soil structure and soil nutrient availability. Different previous crops (wheat and/or oilseed rape) and straw return methods (straw mulching and/or returning) might increase soil organic carbon (C) and total nitrogen (N) content, and further affected the ammonia (NH3) volatilization, nitrous oxide (N2O), and methane (CH4) emissions. A comparison study was carried out in a located field experiment started from 2014 in Central China, aiming to exam seasonal and annual NH3, N2O, and CH4 emissions under the wheat-rice (WR) and oilseed rape-rice (OR) rotations. Three treatments were chosen, i.e., (i) no chemical N fertilizer application (PK), (ii) chemical nitrogen-phosphorus-potassium combination (NPK), and (iii) chemical NPK with straw returning (NPK+St). We found that after 3 years of cultivation, treatment with straw return increased soil total N content and organic C by 15.57% and 17.11% on average as compared with the NPK treatment, respectively. Straw return did not generate additional NH3 and N2O losses during the rice season after improving soil fertility. However, CH4 emissions increased by 45.35% on average after straw return in summer. In winter, straw return increased NH3, N2O, and CH4 emissions by 70.12-85.23%, 16.93-22.97%, and 7.18-9.17%, respectively. The stimulation of NH3 volatilization mainly occurred in the topdressing stage. Compared with WR rotation, OR rotation had no significant effect on NH3 and CH4 emissions, and the change of N2O emission might be related to the increase of soil C and N pools. The retention of residues in the process of straw decomposition may be the main factor leading to the difference of gas emission between the paddy-upland rotation and straw return.


Asunto(s)
Gases de Efecto Invernadero , Oryza , Agricultura/métodos , Amoníaco , Carbono , Fertilizantes/análisis , Gases de Efecto Invernadero/análisis , Metano/análisis , Nitrógeno , Óxido Nitroso/análisis , Suelo , Triticum , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...