Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
Food Chem ; 452: 139544, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38723571

RESUMEN

This study investigated the effects of high hydrostatic pressure (HHP) on the binding interactions of cyanindin-3-O-glucoside (C3G) to bovine serum albumin, human serum albumin (HSA), bovine lactoferrin, and ovotransferrin. Fluorescence quenching revealed that HHP reduced C3G-binding affinity to HSA, while having a largely unaffected role for the other proteins. Notably, pretreating HSA at 500 MPa significantly increased its dissociation constant with C3G from 24.7 to 34.3 µM. Spectroscopic techniques suggested that HSA underwent relatively pronounced tertiary structural alterations after HHP treatments. The C3G-HSA binding mechanisms under pressure were further analyzed through molecular dynamics simulation. The localized structural changes in HSA under pressure might weaken its interaction with C3G, particularly polar interactions such as hydrogen bonds and electrostatic forces, consequently leading to a decreased binding affinity. Overall, the importance of pressure-induced structural alterations in proteins influencing their binding with anthocyanins was highlighted, contributing to optimizing HHP processing for anthocyanin-based products.

2.
Compr Rev Food Sci Food Saf ; 23(3): e13362, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38720585

RESUMEN

Fermentation is a traditional method utilized for vegetable preservation, with microorganisms playing a crucial role in the process. Nowadays, traditional spontaneous fermentation methods are widely employed, which excessively depend on the microorganisms attached to the surface of raw materials, resulting in great difficulties in ideal control over the fermentation process. To achieve standardized production and improve product quality, it is essential to promote inoculated fermentation. In this way, starter cultures can dominate the fermentation processes successfully. Unfortunately, inoculated fermentation has not been thoroughly studied and applied. Therefore, this paper provides a systematic review of the potential upgrading strategy of vegetable fermentation technology. First, we disclose the microbial community structures and succession rules in some typical spontaneously fermented vegetables to comprehend the microbial fermentation processes well. Then, internal and external factors affecting microorganisms are explored to provide references for the selection of fermented materials and conditions. Besides, we widely summarize the potential starter candidates with various characteristics isolated from spontaneously fermented products. Subsequently, we exhibited the inoculated fermentation strategies with those isolations. To optimize the product quality, not only lactic acid bacteria that lead the fermentation, but also yeasts that contribute to aroma formation should be combined for inoculation. The inoculation order of the starter cultures also affects the microbial fermentation. It is equally important to choose a proper processing method to guarantee the activity and convenience of starter cultures. Only in this way can we achieve the transition from traditional spontaneous fermentation to modern inoculated fermentation.


Asunto(s)
Fermentación , Verduras , Bacterias , Alimentos Fermentados/microbiología , Microbiología de Alimentos/métodos , Microbiota , Verduras/microbiología , Levaduras
3.
J Agric Food Chem ; 72(12): 6454-6462, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38477968

RESUMEN

In this study, the phenomenon of the stability-activity trade-off, which is increasingly recognized in enzyme engineering, was explored. Typically, enhanced stability in enzymes correlates with diminished activity. Utilizing Rosa roxburghii copper-zinc superoxide dismutase (RrCuZnSOD) as a model, single-site mutations were introduced based on a semirational design derived from consensus sequences. The initial set of mutants was selected based on activity, followed by combinatorial mutation. This approach yielded two double-site mutants, D25/A115T (18,688 ± 206 U/mg) and A115T/S135P (18,095 ± 1556 U/mg), exhibiting superior enzymatic properties due to additive and synergistic effects. These mutants demonstrated increased half-lives (T1/2) at 80 °C by 1.2- and 1.6-fold, respectively, and their melting temperatures (Tm) rose by 3.4 and 2.5 °C, respectively, without any loss in activity relative to the wild type. Via an integration of structural analysis and molecular dynamics simulations, we elucidated the underlying mechanism facilitating the concurrent enhancement of both thermostability and enzymatic activity.


Asunto(s)
Simulación de Dinámica Molecular , Ingeniería de Proteínas , Estabilidad de Enzimas , Temperatura , Secuencia de Consenso
4.
Food Chem X ; 21: 101177, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38434693

RESUMEN

Casein micelle has a structure of outer hydrophilicity and inner hydrophobicity, its typical digestion characteristic is gastric coagulation. Based on calcium content as the key factor to control this process, high hydrostatic pressure (HHP) was firstly used to modify the micelle structure by mediating the tight connection between casein molecules themselves and with colloidal calcium, then the quercetin-loaded delivery systems were prepared. And in order to investigate the effect of exogenous calcium, calcium chloride was added for digestion. The results indicated that HHP broke the limitation of casein micelles as delivery carriers for hydrophobic components and increased the EE from 51.18 ± 3.07 % to 76.17 ± 3.41 %. During gastric digestion, higher pressure and exogenous calcium synergistically increased the clotting ability and inhibited the release of quercetin. In the small intestine, curds decomposed more slowly under higher pressure and calcium concentration, so the degradation of quercetin was effectively inhibited.

5.
Sci Total Environ ; 918: 170642, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38320694

RESUMEN

The emergence of microplastics as contaminants has raised concerns regarding their potential toxicity. Recent studies on microplastic pollution caused by food packaging have drawn attention to its impact on health. However, despite being used extensively in food packaging, there is little knowledge about the toxicity of polyethylene microplastics (PE-MPs). Here, we studied the toxicity of PE-MPs on the model animal honeybees using different particle sizes (1 µm, 10 µm, 100 µm in diameter). Oral exposure to 100-µm PE-MPs resulted in elevated honeybee mortality and increased their susceptibility to pathogens. This is likely due to the mechanical disruption and gut microbial dysbiosis by PE-MPs. Snodgrassella, a core functional gut bacteria, was specifically enriched on the surface of PE-MPs, which perturbs the gut microbial communities in honeybees. Furthermore, the increased mortality in challenge trials with the opportunistic pathogen Hafnia alvei for PE-MPs pre-exposed honeybees revealed a potential health risk. These findings provide fresh insights into evaluating the potential hazards associated with PE-MPs.


Asunto(s)
Microbioma Gastrointestinal , Polietileno , Abejas , Animales , Polietileno/toxicidad , Microplásticos , Plásticos , Disbiosis
6.
J Adv Res ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402948

RESUMEN

INTRODUCTION: The scarcity of naturally available sources for blue colorants has driven reliance on synthetic alternatives. Nevertheless, growing health concerns have prompted the development of naturally derived blue colorants, which remains challenging with limited success thus far. Anthocyanins (ACNs) are known for providing blue colors in plants, and metal complexation with acylated ACNs remains the primary strategy to generate stable blue hues. However, this approach can be costly and raise concerns regarding potential metal consumption risks. OBJECTIVES: Our study aims to introduce a metal-free approach to achieve blue coloration in commonly distributed non-acylated 3-glucoside ACNs by exploring their interactions with proteins and unveiling the underlying mechanisms. METHODS: Using human serum albumin (HSA) as a model protein, we investigated the structural influences of ACNs on their blue color generation using visible absorption spectroscopy, fluorescence quenching, and molecular simulations. Additionally, we examined the bluing effects of six proteins derived from milk and egg and identified the remarkable roles of bovine serum albumin (BSA) and lysozyme (LYS). RESULTS: Our findings highlighted the importance of two or more hydroxyl or methoxyl substituents in the B-ring of ACNs for generating blue colors. Cyanidin-, delphinidin- and petunidin-3-glucoside, featuring two neighboring hydroxyl groups in the B-ring, exhibited blue coloration when interacting with HSA or LYS, driven primarily by favorable enthalpy changes. In contrast, malvidin-3-glucoside, with two methoxyl substituents, achieved blue coloration through interactions with HSA or BSA, where entropy change played significant roles. CONCLUSION: Our work, for the first time, demonstrates the remarkable capability of widely distributed 3-glucoside ACNs to generate diverse blue shades through interactions with certain proteins. This offers a promising and straightforward strategy for the production of ACN-based blue colorants, stimulating further research in this field.

7.
Food Res Int ; 173(Pt 1): 113336, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37803646

RESUMEN

This study aimed to analyze and reduce the pressure resistance (PR), sublethal injury (SLI), and viable but non-culturable (VBNC) populations during HPP. Escherichia coli, Staphylococcus aureus, Bacillus amyloliquefaciens and Lactiplantibacillus plantarum were selected for evaluation of PR, SLI and VBNC cell counts and proportions during HPP. The results revealed that the bactericidal efficiency against these strains gradually improved as the processing pressure increased. However, viable bacteria could still be detected, suggesting that there may involve the presence of resistant population that difficult to be killed or revived from SLI. Further detecting the quantity and proportion of PR, SLI and VBNC bacteria found that these state of cells were present during whole HPP treatment. Additionally, the more resistant a bacterial species was to high pressure, the fewer SLI and more resuscitable VBNC (RVBNC) populations it generated, and vice versa. Therefore, correlation analysis was also employed to make the relationship between log reduction, SLI and RVBNC population ratios clearer. The results demonstrated that the log reduction was highly positive correlation with SLI population ratios, and negative correlation with RVBNC population within our detected species at 500 MPa. Furthermore, CO2 and Nisin were employed to combined with HPP to reduce these survivors. Comparing with 233, 218, 241 and 259 MPa for HPP treatment, it took 37, 89, 135 and 229 MPa for HPP + CO2, and 189, 161, 199 and 292 MPa for HPP + Nisin to the first decimal reduction for E. coli, S.aureus, B. amyloliquefaciens and L. plantarum, respectively. The results indicated that HPP combined with CO2 or Nisin could significantly reduce the quantity of PR, SLI, and RVBNC cells during HPP, and provide better bactericidal effects. In conclusion, we quantified the presence of PR, SLI, and VBNC bacteria after high pressure treatment and investigate the effectiveness of HPP combined with CO2 or Nisin to enhance the inactivation of bacteria and reduce the occurrence of PR, SLI, and RVBNC bacteria.


Asunto(s)
Bacillus amyloliquefaciens , Nisina , Escherichia coli , Staphylococcus aureus , Dióxido de Carbono , Antibacterianos/farmacología , Bacterias
8.
Int J Biol Macromol ; 253(Pt 2): 126758, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37689287

RESUMEN

The effects of high pressure homogenization (HPH) at different pressures (50, 100, 150 and 200 MPa) and temperatures (4, 20, 40, 60 and 80 °C) on the interaction between corn starch (CS) and cyanidin-3-O-glucoside (C3G) were investigated. Based on analyses of zeta potential, attenuated total reflection-flourier transformed infrared spectroscopy and binding rate after adding shielding agents, the main interaction force changed from electrostatic interaction to hydrogen bonds. In comparison, the interaction between CS and C3G exhibited greater strength at low temperatures and pressures. Especially, 4 °C/50 MPa HPH caused the most significant enhancement in binding rate and binding amount, from 9.56 % to 25.16 % and 0.96 µg/mg CS to 2.52 µg/mg CS, respectively. At this condition, the specific surface area of CS-C3G increased from 433.57 ± 0.91 m2/kg to 440.93 ± 1.01 m2/kg. Surface fluorescence reduction was observed by confocal laser scanning microscopy, further X-ray diffraction patterns indicated the retention of partial spatial structure. Therefore, HPH opened the entry channels, increased contact area and preserved steric hindrance, which increased hydrogen bonding sites. At high temperatures and high pressures (> 40 °C, > 100 MPa), the increasing free starch chains provided new hydrogen bonding sites. Overall, HPH was an effective method to enhance the interaction by affecting starch structure.


Asunto(s)
Almidón , Zea mays , Zea mays/metabolismo , Almidón/química , Temperatura , Antocianinas/química , Glucósidos/química
9.
J Adv Res ; 2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37541583

RESUMEN

INTRODUCTION: Entry into the viable but nonculturable (VBNC) state is a survival strategy adopted by bacteria to survive harsh environment. Although VBNC cells still have metabolic activity, they lose the ability to form colonies on nonselective culture media. Thus, conventional bacterial detection methods, such as plate counting, are unable to detect the presence of VBNC cells. When the environmental conditions are appropriate, VBNC cells can initiate resuscitation, posing a great risk to the safety of public health. The study of the VBNC resuscitation mechanism could provide new insights into the prevention and control of VBNC resuscitation. OBJECTIVES: Uncovering the molecular mechanism of VBNC cell resuscitation by investigating the role of O-antigen ligase (RfaL) in inhibiting the resuscitation of Escherichia coli O157:H7 in the VBNC state. METHODS: RfaL was screened and verified as a resuscitation inhibitor of VBNC Escherichia coli O157:H7 by detecting resuscitation curve and time-lapse microscopy. The mechanism of RfaL impacts VBNC E. coli resuscitation was investigated by detecting the single cell ATP content, metabolomic changes, NAD(H) content and new protein biosynthesis of WT and ΔrfaL at different stage of resuscitation. RESULTS: Mutation of rfaL, which encoded an O-antigen ligase, markedly shortened the resuscitating lag phase. Further studies indicated that ΔrfaL VBNC cells contained higher ATP levels, and ATP consumption during the resuscitating lag phase was highly correlated with resuscitation efficiency. Metabolomic analysis revealed that ATP was utilized to activate the Handler and salvage pathways to synthesize NAD+, balancing redox reactions to recover cell activity and promote cell resuscitation. CONCLUSION: Our findings revealed a strategy employed by VBNC cells for revival, that is, using residual ATP to primarily recover metabolic activity, driving cells to exit dormancy. The synthesis pathway of lipopolysaccharide (LPS) in rfaL null mutant was inhibited and could supply more ATP to synthesis NAD+ and promote resuscitation.

10.
Int J Biol Macromol ; 252: 126199, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37562477

RESUMEN

The incidence of diabetes, as a metabolic disease characterized by high blood sugar levels, is increasing every year. The predominantly western medicine treatment is associated with certain side effects, which has prompted people to turn their attention to natural active substances. Natural polysaccharide is a safe and low-toxic natural substance with various biological activities. Hypoglycemic activity is one of the important biological activities of natural polysaccharides, which has great potential for development. A systematic review of the latest research progress and possible molecular mechanisms of hypoglycemic activity of natural polysaccharides is of great significance for better understanding them. In this review, we systematically reviewed the relationship between the hypoglycemic activity of polysaccharides and their structure in terms of molecular weight, monosaccharide composition, and glycosidic bonds, and summarized underlying molecular mechanisms the hypoglycemic activity of natural polysaccharides. In addition, the potential mechanisms of natural polysaccharides improving the complications of diabetes were analyzed and discussed. This paper provides some valuable insights and important guidance for further research on the hypoglycemic mechanisms of natural polysaccharides.


Asunto(s)
Hipoglucemiantes , Polisacáridos , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Hipoglucemiantes/química , Polisacáridos/farmacología , Polisacáridos/uso terapéutico , Polisacáridos/química , Monosacáridos , Peso Molecular
11.
Crit Rev Food Sci Nutr ; : 1-27, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395263

RESUMEN

Myricitrin is a member of flavonols, natural phenolic compounds extracted from plant resources. It has gained great attention for various biological activities, such as anti-inflammatory, anti-cancer, anti-diabetic, as well as cardio-/neuro-/hepatoprotective activities. These effects have been demonstrated in both in vitro and in vivo models, making myricitrin a favorable candidate for the exploitation of novel functional foods with potential protective or preventive effects against diseases. This review summarized the health benefits of myricitrin and attempted to uncover its action mechanism, expecting to provide a theoretical basis for their application. Despite enormous bioactive potential of myricitrin, low production, high cost, and environmental damage caused by extracting it from plant resources greatly constrain its practical application. Fortunately, innovative, green, and sustainable extraction techniques are emerging to extract myricitrin, which function as alternatives to conventional techniques. Additionally, biosynthesis based on synthetic biology plays an essential role in industrial-scale manufacturing, which has not been reported for myricitrin exclusively. The construction of microbial cell factories is absolutely an appealing and competitive option to produce myricitrin in large-scale manufacturing. Consequently, state-of-the-art green extraction techniques and trends in biosynthesis were reviewed and discussed to endow an innovative perspective for the large-scale production of myricitrin.

12.
Compr Rev Food Sci Food Saf ; 22(4): 2728-2746, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37125461

RESUMEN

Bacterial spores are highly resilient and universally present on earth and can irreversibly enter the food chain to cause food spoilage or foodborne illness once revived to resume vegetative growth. Traditionally, extensive thermal processing has been employed to efficiently kill spores; however, the relatively high thermal load adversely affects food quality attributes. In recent years, the germination-inactivation strategy has been developed to mildly kill spores based on the circumstance that germination can decrease spore-resilient properties. However, the failure to induce all spores to geminate, mainly owing to the heterogeneous germination behavior of spores, hampers the success of applying this strategy in the food industry. Undoubtedly, elucidating the detailed germination pathway and underlying mechanism can fill the gap in our understanding of germination heterogeneity, thereby facilitating the development of full-scale germination regimes to mildly kill spores. In this review, we comprehensively discuss the mechanisms of spore germination of Bacillus and Clostridium species, and update the molecular basis of the early germination events, for example, the activation of germination receptors, ion release, Ca-DPA release, and molecular events, combined with the latest research evidence. Moreover, high hydrostatic pressure (HHP), an advanced non-thermal food processing technology, can also trigger spore germination, providing a basis for the application of a germination-inactivation strategy in HHP processing. Here, we also summarize the diverse germination behaviors and mechanisms of spores of Bacillus and Clostridium species under HHP, with the aim of facilitating HHP as a mild processing technology with possible applications in food sterilization. Practical Application: This work provides fundamental basis for developing efficient killing strategies of bacterial spores in food industry.


Asunto(s)
Manipulación de Alimentos , Esporas Bacterianas , Esporas Bacterianas/metabolismo
13.
Food Res Int ; 167: 112710, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087272

RESUMEN

As a novel non-thermal pasteurization technology, high pressure carbon dioxide (HPCD) has been used in food processing. However, it could induce microorganisms into a viable but nonculturable (VBNC) state, posing a potential risk to food safety and public health. In this study, we attempted to investigate the effect of various preliminary stresses including cold, heat, osmosis, acidity and oxidation on HPCD-induced VBNC formation. The results indicated that there was no effect of preliminary stresses on VBNC Staphylococcus aureus induction. However, heat, acidity and long-term (24 h) cultivation preadaptation could significantly increase the VBNC E. coli production induced by HPCD. Transcriptome analysis revealed that genes involved in ATP production were significantly decreased in these three stress-treated cells, and further ATP levels determination revealed that the ATP levels of the cell were significantly decreased after heat, acidity and long-term cultivation preadaptation, implying the decrease of ATP level caused by these stresses might be the reason for increasing VBNC production. To further study the relationship between ATP level and VBNC cell ratios after preadaptation. We artificially decreased the ATP levels, and detect their VBNC ratios after HPCD treatment. We found that with the ATP concentration decreasing after exposure to carbonyl cyanide m-chlorophenyl hydrazine (CCCP), the VBNC ratios were increased after HPCD treatment, indicating that the ATP contents were highly negatively correlated with VBNC ratios. This study proved that the preadaptation of heat, acidity and long-term cultivation could promote VBNC induction by decreasing the intracellular ATP level. In general, the obtained result gave the instruction about the storage environment for food materials, helped to further develop and optimize the HPCD processing to prevent VBNC formation and accelerate the development of HPCD technology in food industry.


Asunto(s)
Escherichia coli O157 , Staphylococcus aureus , Inocuidad de los Alimentos , Manipulación de Alimentos , Adenosina Trifosfato/farmacología
14.
Front Microbiol ; 14: 1108194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937272

RESUMEN

As a non-thermal technology, high hydrostatic pressure (HHP) has been widely investigated for inactivating microorganisms in food. Few studies have been presented on the pressurization/depressurization rate and mode of microbial inactivation. In this study, effect of pressurization rate and mode on Escherichia coli and Staphylococcus aureus cell damage during HHP treatment was investigated. The results showed that fast pressurization + linear mode (FL) treatment has the best bactericidal effect on E. coli and S. aureus, followed by fast pressurization + stepwise mode (FS) and slow pressurization + stepwise mode (SS) treatments. FL treatment caused more morphological damage to the cell wall, cell membrane, and cytoplasmic components compared with FS and SS treatment detected by SEM and TEM. Additionally, the damage to membrane permeability of them was also enhanced after FL treatment. Therefore, our results indicated that FL treatment could be applied to enhance the bactericidal effect of HHP on bacteria by increasing the damage to cell morphological structure and membrane integrity.

15.
Molecules ; 28(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36903607

RESUMEN

For the better standardization and widespread application of the determination method of carotenoids in both chili peppers and their products, this work reports for the first time the simultaneous determination of five main carotenoids, including capsanthin, zeaxanthin, lutein, ß-cryptoxanthin and ß-carotene in chili peppers and their products, with optimized extraction and the high-performance liquid chromatography (HPLC) method. All parameters in the methodological evaluation were found to be in good stability, recovery and accuracy compliance with the reference values; the R coefficients for the calibration curves were more than 0.998; and the LODs and LOQs varied from 0.020 to 0.063 and from 0.067 to 0.209 mg/L, respectively. The characterization of five carotenoids in chili peppers and their products passed all the required validation criteria. The method was applied in the determination of carotenoids in nine fresh chili peppers and seven chili pepper products.


Asunto(s)
Capsicum , beta Caroteno , beta Caroteno/análisis , Luteína/análisis , Zeaxantinas/análisis , Capsicum/química , Cromatografía Líquida de Alta Presión/métodos , beta-Criptoxantina/análisis , Carotenoides/química
16.
Food Chem ; 416: 135726, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36893635

RESUMEN

The investigation of intermolecular interactions has become increasingly important in many studies, mainly by combining different analytical approaches to reveal the molecular mechanisms behind specific experimental phenomena. From spectroscopic analysis to sophisticated molecular simulation techniques like molecular docking, molecular dynamics (MD) simulation, and quantum chemical calculations (QCC), the mechanisms of intermolecular interactions are gradually being characterized more clearly and accurately, leading to revolutionary advances. This article aims to review the progression in the main techniques involving intermolecular interactions in food research and the corresponding experimental results. Finally, we discuss the significant impact that cutting-edge molecular simulation technologies may have on the future of conducting deeper exploration. Applications of molecular simulation technology may revolutionize the food research, making it possible to design new future foods with precise nutrition and desired properties.


Asunto(s)
Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular
17.
Food Chem ; 413: 135377, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36773358

RESUMEN

Chlorophylls (Chls) have been shown to help regulate blood glucose levels. In this study, the effects of Chls and its derivative, pheophytin a (Phe a), on starch digestion in vitro were investigated. Chls significantly decreased starch hydrolysis while increasing resistant starch content (p < 0.05). SEM revealed that Chls either existed in free form or was absorbed and embedded on the surface of starch granules. Spectroscopic analysis and molecular docking demonstrated that Chls had a dual effect: (1) the phytol chain of Chls formed a double helix structure with starch, which may hinder the starch-enzyme contacts; and (2) the porphyrin ring of Chls interacted with amino acid residues of α-amylase and α-glucosidase to change the characteristics of enzymes, thereby inhibiting their activities. The investigation may serve as motivation for developing healthful starchy foods rich in Chls and enhancing the selection of foods for diabetics and hyperglycemias.


Asunto(s)
Almidón , alfa-Glucosidasas , Almidón/química , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , alfa-Amilasas/metabolismo , Hidrólisis , Clorofila , Digestión
18.
Curr Res Food Sci ; 6: 100454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36815996

RESUMEN

A high intake of sugar-sweetened fruity beverage (FB) is associated with a higher risk of metabolic syndromes, but the health outcome of 100% fruit juice (FJ) intake remains unclear. We aim to reveal health outcomes of diet intervention (FJ or FB) with system profiling via interaction of gut microbiota and metabolomics in a rat (Rattus norvegicus) model. Firstly, the glucose, sucrose, fructose, and bioactive metabolites of FJ and FB were analyzed, and FJ possessed higher sucrose and flavonoids, while FB showed higher glucose and fructose. Secondly, C0 was set as the control group on Day 0, and a 4-week diet invention was performed to control, FJ-intake, and FB-intake groups with normal saline, FJ, and FB, respectively. The results showed that FJ improved alpha diversity and decreased the Firmicutes/Bacteroidota ratio (F/B ratio) of gut microbiota and prevented insulin resistance. However, FB possessed unchanged microbial diversity and enhanced F/B ratio, causing insulin resistance with renal triglyceride accumulation. In summary, FJ, although naturally containing similar amounts of total free sugars as FB, could be a healthier drink choice.

19.
Food Chem ; 410: 135473, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36641910

RESUMEN

The potential binding of cyanidin-3-O-glucoside (C3G) to bovine lactoferrin (BLF) and ovotransferrin (OTF) at pH 3, 5, and 7 was investigated for the first time. Multiple spectroscopic techniques demonstrated pH-dependent alterations in the conformational characteristics of BLF and OTF upon complexation with C3G. Fluorescence quenching assays showed that their highest binding affinity was at pH 7. Hydrophobic interactions and hydrogen bonds were found to be crucial in molecular dynamics simulations but with significantly lower probabilities of formation at pH 3 (p < 0.05). At pH 7, electrostatic attraction can occur for the negatively charged forms of C3G, and the well-maintained native structures of BLF and OTF may be favorable for stabilizing the C3G binding sites. This study sheds light on the stronger interaction of C3G with BLF/OTF at pH 7, which may have implications for future applications such as anthocyanin stabilization or the development of functional food ingredients.


Asunto(s)
Antocianinas , Transferrinas , Antocianinas/química , Transferrinas/metabolismo , Espectrometría de Fluorescencia , Sitios de Unión , Lactoferrina/química , Concentración de Iones de Hidrógeno
20.
Food Res Int ; 163: 112256, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596167

RESUMEN

Reducing sodium salt content in traditional fermented vegetables and developing low-salt fermented products have attracted increasing attention.However, low-salt fermented vegetables are prone to accumulate toxic biogenic amines (BAs) caused by the undesirable metabolism of spoilage microorganisms. This study aimed to investigate the impact of a CO2-modified atmosphere (MA) approach to the fermentation of low-salt Zhacai and the accumulation of BAs. The results show CO2-MA effectively suppressed the production of excessive BAs in low-salt Zhacai, as evidenced by a decrease in the total BA content from 63.66 to 161.41 mg/ kg under natural air conditions to 1.88-24.76 mg/ kg under CO2-MA. Overall, the mechanism of hindering BA formation was closely related to the change in the microbial community and the downregulation of BA-producing enzymes. Lactic acid bacteria, including Lactiplantibacillus plantarum, Weissella spp., and Pediococcus spp., were enriched under CO2-MA, whereas amine-producing microorganisms (e.g., Halomonas spp., Psychrobacter spp., Corynebacterium spp., and Levilactobacillus brevis) were greatly inhibited. Moreover, metagenomic analysis revealed that genes encoding amino acid decarboxylase, amine deiminase, and amine synthase were downregulated, which could be the fundamental reason for BA reduction. This study provides an alternative method for reducing BA production in fermented food.


Asunto(s)
Aminoácidos , Dióxido de Carbono , Fermentación , Aminoácidos/metabolismo , Aminas Biogénicas/análisis , Verduras/metabolismo , Atmósfera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...