Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 14(12): 796, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052820

RESUMEN

Acute myeloid leukemia (AML) cell survival and chemoresistance are influenced by the existence of bone marrow mesenchymal stem cells (BMMSCs); however, the pathways by which BMMSCs contribute to these processes remain unclear. We earlier revealed that methyltransferase-like 3 (METTL3) expression is significantly reduced in AML BMMSCs and that METTL3 mediates BMMSC adipogenesis to promote chemoresistance in human AML cell lines in vitro. In this investigation, we evaluated the METTL3 function in vivo. Mice exhibiting a conditional removal of Mettl3 in BMMSCs were developed by mating Prrx1-CreERT2;Mettl3fl/+ mice with Mettl3fl/fl mice using the CRISPR-Cas9 system. The Mettl3 deletion increased bone marrow adiposity, enhanced disease progression in the transplantation-induced MLL-AF9 AML mouse model, and chemoresistance to cytarabine. The removal of Mettl3 in BMMSCs resulted in a significant increase in BMMSC adipogenesis. This effect was attributed to the downregulation of AKT1 expression, an AKT serine/threonine kinase 1, in an m6A-dependent manner. The development of chemoresistance in AML is linked to the promoted adipogenesis of BMMSCs. We conclude that METTL3 expression in BMMSCs has a critical function in limiting AML progression and chemoresistance, providing a basis for the progression of therapeutic approaches for AML.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Ratones , Humanos , Animales , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Médula Ósea , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Mesenquimatosas/metabolismo
2.
Mol Cancer Res ; 21(12): 1366-1378, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37698549

RESUMEN

Acute myeloid leukemia (AML), an aggressive hematopoietic malignancy, exhibits poor prognosis and a high recurrence rate largely because of primary and secondary drug resistance. Elevated serum IL6 levels have been observed in patients with AML and are associated with chemoresistance. Chemoresistant AML cells are highly dependent on oxidative phosphorylation (OXPHOS), and mitochondrial network remodeling is essential for mitochondrial function. However, IL6-mediated regulation of mitochondrial remodeling and its effectiveness as a therapeutic target remain unclear. We aimed to determine the mechanisms through which IL6 facilitates the development of chemoresistance in AML cells. IL6 upregulated mitofusin 1 (MFN1)-mediated mitochondrial fusion, promoted OXPHOS, and induced chemoresistance in AML cells. MFN1 knockdown impaired the effects of IL6 on mitochondrial function and chemoresistance in AML cells. In an MLL::AF9 fusion gene-induced AML mouse model, IL6 reduced chemosensitivity to cytarabine (Ara-C), a commonly used antileukemia drug, accompanied by increased MFN1 expression, mitochondrial fusion, and OXPHOS status. In contrast, anti-IL6 antibodies downregulated MFN1 expression, suppressed mitochondrial fusion and OXPHOS, enhanced the curative effects of Ara-C, and prolonged overall survival. In conclusion, IL6 upregulated MFN1-mediated mitochondrial fusion in AML, which facilitated mitochondrial respiration, in turn, inducing chemoresistance. Thus, targeting IL6 may have therapeutic implications in overcoming IL6-mediated chemoresistance in AML. IMPLICATIONS: IL6 treatment induces MFN1-mediated mitochondrial fusion, promotes OXPHOS, and confers chemoresistance in AML cells. Targeting IL6 regulation in mitochondria is a promising therapeutic strategy to enhance the chemosensitivity of AML.


Asunto(s)
Interleucina-6 , Leucemia Mieloide Aguda , Animales , Humanos , Ratones , Citarabina/farmacología , Resistencia a Antineoplásicos , Interleucina-6/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Dinámicas Mitocondriales
3.
Epigenetics ; 18(1): 2160134, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36567510

RESUMEN

Patients with acute myeloid leukaemia (AML) have poor prognoses and low overall survival (OS) rates owing to its heterogeneity and the complexity of its tumour microenvironment (TME). N6-methyladenosine (m6A) modification plays a key role in the initiation and progression of haematopoietic malignancies. However, the underlying function of m6A regulators in AML remains elusive. This study thoroughly analysed the m6A modification features of 177 AML patients based on 22 m6A regulators. Utilizing unsupervised clustering, we determined three distinct m6A modification patterns related to different biological functions, TME cell-infiltrating characteristics and clinical outcomes. Additionally, a risk score was constructed based on six m6A regulators-associated prognostic signatures and was validated as an independent and valuable prognostic factor for AML. Patients with a low-risk score exhibited better survival than those with a high-risk score. Many m6A regulators were aberrantly expressed in AML, among which METTL14, YTHDC2, ZC3H13 and RBM15 were observed to be associated with the OS of AML. In addition, these four m6A regulators were found to be noticeably related to the immune checkpoint inhibitor (ICI) treatments. Finally, we verified the expression levels of these four m6A regulators in AML and healthy samples and three groups of AML patients with different risk categories. Collectively, our study indicates that the m6A modification pattern is involved in TME immune-infiltrating characteristics and prognosis in AML. A better understanding of the m6A modification pattern will help enhance our knowledge of the molecular mechanisms of AML and develop potential prognosis prediction indicators and more effective immunotherapeutic strategies.


Asunto(s)
Leucemia Mieloide Aguda , Microambiente Tumoral , Humanos , Metilación de ADN , Pronóstico , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA