Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Microb Pathog ; : 106780, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969189

RESUMEN

This study was designed to assess the possibility of using bacteriophage-encoded endolysins for controlling planktonic and biofilm cells. The endolysins, LysEP114 and LysEP135, were obtained from plasmid vectors containing the endolysin genes derived from Escherichia coli phages. The high identity (>96%) was observed between LysEP114 and LysEP135. LysEP114 and LysEP135 were characterized by pH, thermal, and lactic acid stability, lytic spectrum, antibacterial activity, and biofilm eradication. The molecular masses of LysEP114 and LysEP135 were 18.2 kDa, identified as muramidases. LysEP114 and LysEP135 showed high lytic activity against the outer membrane-permeabilized E. coli KCCM 40405 at below 37°C, between pH 5 to 11, and below 70 mM of lactic acid. LysEP114 and LysEP135 showed the broad rang of lytic activity against E. coli KACC 10115, S. Typhimurium KCCM 40253, S. Typhimurium CCARM 8009, tetracycline-resistant S. Typhimurium, polymyxin B-resistant S. Typhimurium, chloramphenicol-resistant S. Typhimurium, K. pneumoniae ATCC 23357, K. pneumoniae CCARM 10237, and Shigella boydii KACC 10792. LysEP114 and LysEP135 effectively reduced the numbers of planktonic E. coli KCCM by 1.7 and 2.1 log, respectively, when treated with 50 mM lactic acid. The numbers of biofilm cells were reduced from 7.3 to 4.1 log CFU/ml and 2.2 log CFU/ml, respectively, when treated with LysEP114- and LysEP135 in the presence of 50 mM lactic acid. The results suggest that the endolysins in combination with lactic acid could be potential alternative therapeutic agents for controlling planktonic and biofilm cells.

2.
Food Res Int ; 190: 114650, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945629

RESUMEN

Various pathogens have the ability to grow on food matrices and instruments. This grow may reach to form biofilms. Bacterial biofilms are community of microorganisms embedded in extracellular polymeric substances (EPSs) containing lipids, DNA, proteins, and polysaccharides. These EPSs provide a tolerance and favorable living condition for microorganisms. Biofilm formations could not only contribute a risk for food safety but also have negative impacts on healthcare sector. Once biofilms form, they reveal resistances to traditional detergents and disinfectants, leading to cross-contamination. Inhibition of biofilms formation and abolition of mature biofilms is the main target for controlling of biofilm hazards in the food industry. Some novel eco-friendly technologies such as ultrasound, ultraviolet, cold plasma, magnetic nanoparticles, different chemicals additives as vitamins, D-amino acids, enzymes, antimicrobial peptides, and many other inhibitors provide a significant value on biofilm inhibition. These anti-biofilm agents represent promising tools for food industries and researchers to interfere with different phases of biofilms including adherence, quorum sensing molecules, and cell-to-cell communication. This perspective review highlights the biofilm formation mechanisms, issues associated with biofilms, environmental factors influencing bacterial biofilm development, and recent strategies employed to control biofilm-forming bacteria in the food industry. Further studies are still needed to explore the effects of biofilm regulation in food industries and exploit more regulation strategies for improving the quality and decreasing economic losses.


Asunto(s)
Biopelículas , Industria de Alimentos , Microbiología de Alimentos , Inocuidad de los Alimentos , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Percepción de Quorum/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/crecimiento & desarrollo , Antibacterianos/farmacología
3.
Microb Drug Resist ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900709

RESUMEN

The aim of this study was to evaluate the phenotypic and genotypic responses of Salmonella Typhimurium ATCC 19585 (ST) and Staphylococcus aureus KACC 13236 (SA) preadapted to sublethal concentrations of lactic acid (LA) and sodium chloride (NaCl) for 48 hr at 37°C, followed by re-exposure to lethal concentrations of LA and NaCl for 24 hr at 37°C. ST and SA treated in a sequential and ordered manner with LA and NaCl were assigned as LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl. The treatments, LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl, were evaluated by antimicrobial susceptibility, bacterial fluctuation, relative fitness, zeta potential, and gene expression. The MICt/MICc ratios of LA, NaCl, CIP, GEN, and TET against ST treated with LA-LA were 1.0 to 0.8, 0.8, 0.3, 0.4, and 0.5, respectively. The MICt/MICc ratios of NaCl, CIP, GEN, and TET were between 0.5-0.8 for SA treated with LA-LA. ST treated with LA-LA and SA treated with LA-NaCl exhibited the highest coefficient of variance. The lowest relative fitness was observed at ST treated with LA-LA (0.5). ST and SA treated with LA-LA showed the lowest zeta potential. The transporter-, toxin-antitoxin system-, chaperone protein-, and SOS response-related genes were suppressed at ST and SA treated with LA-LA. The transporter-, toxin-antitoxin system-, and chaperone protein-related genes were overexpressed in SA treated with LA-NaCl, NaCl-LA, and NaCl-NaCl. The results suggest that ST and SA treated with LA-LA, LA-NaCl, NaCl-LA, and NaCl-NaCl could induce collateral sensitivity and cross-resistance.

4.
Curr Res Food Sci ; 8: 100764, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779345

RESUMEN

This study aims to investigate the response of Salmonella Newport to plasma-activated water (PAW), a novel disinfectant that attracts attention due to its broad-spectrum antimicrobial efficacy and eco-friendliness. In this work, we demonstrated that S. Newport of different sequence types (STs) could be induced into the viable but nonculturable (VBNC) state by PAW treatment. Notably, a remarkable 99.96% of S. Newport ST45 strain entered the VBNC state after a 12-min PAW treatment, which was the fastest observed among the five S. Newport STs (ST31, ST45, ST46, ST166, ST2364). Secretion of outer membrane vesicles was observed in ST45, suggesting a potential strategy against PAW treatment. Genes related to oxidative stress (sodA, katE, trxA), outer membrane proteins (ompA, ompC, ompD, ompF) and virulence (pagC, sipC, sopE2) were upregulated in the PAW-treated S. Newport, especially in ST45. A reduction of 38-65% in intracellular ATP level after PAW treatment was observed, indicating a contributor to the formation of the VBNC state. In addition, a rapid method for detecting the proportion of VBNC cells in food products based on pagC was established. This study contributes to understanding the formation mechanism of the VBNC state in S. Newport under PAW stress and offers insights for controlling microbial risks in the food industry.

5.
Neurochem Int ; 177: 105744, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663454

RESUMEN

Traumatic brain injury (TBI) often results in persistent neurological dysfunction, which is closely associated with white matter injury. The mechanisms underlying white matter injury after TBI remain unclear. Ferritinophagy is a selective autophagic process that degrades ferritin and releases free iron, which may cause ferroptosis. Although ferroptosis has been demonstrated to be involved in TBI, it is unclear whether ferritinophagy triggers ferroptosis in TBI. Integrated stress response inhibitor (ISRIB) has neuroprotective properties. However, the effect of ISRIB on white matter after TBI remains uncertain. We aimed to investigate whether ferritinophagy was involved in white matter injury following TBI and whether ISRIB can mitigate white matter injury after TBI by inhibiting ferritinophagy. In this study, controlled cortical impact (CCI) was performed on rats to establish the TBI model. Ferritinophagy was measured by assessing the levels of nuclear receptor coactivator 4 (NCOA4), which regulates ferritinophagy, ferritin heavy chain 1(FTH1), LC3, ATG5, and FTH1 colocalization with LC3 in the white matter. Increased NCOA4 and decreased FTH1 were detected in our study. FTH1 colocalization with LC3 enhanced in the white matter after TBI, indicating that ferritinophagy was activated. Immunofluorescence co-localization results also suggested that ferritinophagy occurred in neurons and oligodendrocytes after TBI. Furthermore, ferroptosis was assessed by determining free iron content, MDA content, GSH content, and Perl's staining. The results showed that ferroptosis was suppressed by NCOA4 knockdown via shNCOA4 lentivirus infection, indicating that ferroptosis in TBI is triggered by ferritinophagy. Besides, NCOA4 deletion notably improved white matter injury following TBI, implying that ferritinophagy contributed to white matter injury. ISRIB treatment reduced the occurrence of ferritinophagy in neurons and oligodendrocytes, attenuated ferritinophagy-induced ferroptosis, and alleviated white matter injury. These findings suggest that NCOA4-mediated ferritinophagy is a critical mechanism underlying white matter injury after TBI. ISRIB holds promise as a therapeutic agent for this condition.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ferritinas , Coactivadores de Receptor Nuclear , Ratas Sprague-Dawley , Sustancia Blanca , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Sustancia Blanca/efectos de los fármacos , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Ferritinas/metabolismo , Masculino , Ratas , Ferroptosis/efectos de los fármacos , Ferroptosis/fisiología , Autofagia/efectos de los fármacos , Autofagia/fisiología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
6.
Antibiotics (Basel) ; 13(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38534695

RESUMEN

Since the discovery of penicillin, ß-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to ß-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing ß-lactamases. Therefore, a combination of ß-lactam antibiotics with ß-lactamase inhibitors has been a promising approach to controlling ß-lactam-resistant bacteria. The discovery of novel ß-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of ß-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of ß-lactamases and the synergistic mechanisms of ß-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in ß-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.

7.
Mar Environ Res ; 196: 106419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408405

RESUMEN

Previous studies have reported the correlations between bacterial communities and coral bleaching, but the knowledge of fungal roles in coral bleaching is still limited. In this study, the taxonomic and functional diversities of fungi in unbleached, partly bleached and bleached stony coral Acropora intermedia were investigated through the ITS-rRNA gene next-generation sequencing. An unexpected diversity of successfully classified fungi (a total of 167 fungal genera) was revealed in this study, and the partly bleached coral samples gained the highest fungal diversity, followed by bleached and unbleached coral samples. Among these fungi, 122 genera (nearly 73.2%) were rarely found in corals in previous studies, such as Calostoma and Morchella, which gave us a more comprehensive understanding of coral-associated fungi. Positively correlated fungal genera (Calostoma, Corticium, Derxomyces, Fusicolla, Penicillium and Vishniacozyma) and negative correlated fungal genera (Blastobotrys, Exophiala and Dacryopinax) with the coral bleaching were both detected. It was found that a series of fungal genera, dominant by Apiotrichum, a source of opportunistic infections, was significantly enriched; while another fungal group majoring in Fusicolla, a probiotic fungus, was distinctly depressed in the bleached coral. It was also noteworthy that the abundance of pathogenic fungi, including Fusarium, Didymella and Trichosporon showed a rising trend; while the saprotrophic fungi, including Tricladium, Botryotrichum and Scleropezicula demostrated a declining trend as the bleaching deteriorating. The rising of pathogenic fungi and the declining of saprotrophic fungi revealed the basic rules of fungal community transitions in the coral bleaching, but the mechanism of coral-associated fungal interactions still lacks further investigation. Overall, this is an investigation focused on the differences of fungal communities at taxonomic and functional levels in stony coral A. intermedia under different bleaching statuses, which provides a better comprehension of the correlations between fungal communities and the coral bleaching.


Asunto(s)
Antozoos , Micobioma , Poríferos , Animales , Bacterias , Arrecifes de Coral
8.
Antimicrob Resist Infect Control ; 12(1): 145, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093321

RESUMEN

BACKGROUND: Disinfectants are important in the food industry to prevent the transmission of pathogens. Excessive use of disinfectants may increase the probability of bacteria experiencing long-term exposure and consequently resistance and cross-resistance to antibiotics. This study aims to investigate the cross-resistance of multidrug-resistant, drug-resistant, and drug-susceptible isolates of Salmonella enterica serovar Typhimurium (S. Typhimurium) with different sequence types (STs) to a group of antibiotics after exposure to different food-grade disinfectants. METHODS: A panel of 27 S. Typhimurium strains with different antibiograms and STs were exposed to increasing concentrations of five food-grade disinfectants, including hydrogen peroxide (H2O2), benzalkonium chloride (BAC), chlorine dioxide (ClO2), sodium hypochlorite (NaClO), and ethanol. Recovered evolved strains were analyzed using genomic tools and phenotypic tests. Genetic mutations were screened using breseq pipeline and changes in resistance to antibiotics and to the same disinfectant were determined. The relative fitness of evolved strains was also determined. RESULTS: Following exposure to disinfectants, 22 out of 135 evolved strains increased their resistance to antibiotics from a group of 14 clinically important antibiotics. The results also showed that 9 out of 135 evolved strains had decreased resistance to some antibiotics. Genetic mutations were found in evolved strains. A total of 77.78% of ST34, 58.33% of ST19, and 66.67% of the other STs strains exhibited changes in antibiotic resistance. BAC was the disinfectant that induced the highest number of strains to cross-resistance to antibiotics. Besides, H2O2 induced the highest number of strains with decreased resistance to antibiotics. CONCLUSIONS: These findings provide a basis for understanding the effect of disinfectants on the antibiotic resistance of S. Typhimurium. This work highlights the link between long-term exposure to disinfectants and the evolution of resistance to antibiotics and provides evidence to promote the regulated use of disinfectants.


Asunto(s)
Antibacterianos , Desinfectantes , Humanos , Antibacterianos/farmacología , Salmonella typhimurium/genética , Serogrupo , Desinfectantes/farmacología , Peróxido de Hidrógeno/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana
9.
Front Public Health ; 11: 1169669, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37927859

RESUMEN

Background: Child sexual abuse is a major public health problem with adverse consequences for victims' physical, mental, and reproductive health. This cross-sectional study aimed to determine the prevalence of child sexual abuse and its associated factors among 15- to 17-year-old adolescents in mainland China. Methods: From September 8, 2019 to January 17, 2020, a total of 48,660 participants were recruited by 58 colleges and universities across the whole country to complete the self-administered, structured, online questionnaire. This analysis was restricted to 3,215 adolescents aged between 15 and 17 years in mainland China. Chi-square tests and multivariate Logistic regression analyses were performed to identify individual, relationship, and community factors associated with child sexual abuse. Results: The overall prevalence of child sexual abuse was 12.0%. More specifically, 13.0% of girls and 10.6% of boys reported that they were sexually abused prior to 18 years of age. At the individual level, being female, sexual minority identity, younger age, and higher levels of knowledge, skills and self-efficacy regarding condom use were significantly related to increased odds of reporting sexual abuse. At the relationship and community level, adolescents from disrupted families and those entering into a marriage, having casual sexual partners, and having first intercourse at a younger age were more likely to report sexual abuse. On the contrary, those who had never discussed sex-related topics with their family members at home and were offered school-based sexuality education later (vs. earlier) were less likely to report sexual abuse. Conclusion: Multilevel prevention programs and strategies, including targeting adolescents with high-risk characteristics, educating young children and their parents about child sexual abuse prevention and optimizing the involvement of parents, school, community, society and government in comprehensive sexuality education, should be taken to reduce child sexual abuse among 15- to 17-year-old adolescents.


Asunto(s)
Abuso Sexual Infantil , Masculino , Humanos , Adolescente , Femenino , Niño , Preescolar , Estudios Transversales , Conducta Sexual , Encuestas y Cuestionarios , China/epidemiología
10.
J Infect Public Health ; 16 Suppl 1: 225-235, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37935604

RESUMEN

BACKGROUND: Although food-grade disinfectants are extensively used worldwide, it has been reported that the long-term exposure of bacteria to these compounds may represent a selective force inducing evolution including the emergence of antibiotic resistance. However, the mechanism underlying this correlation has not been elucidated. This study aims to investigate the genomic evolution caused by long-term disinfectant exposure in terms of antibiotic resistance in Salmonella enterica Typhimurium. METHODS: S. Typhimurium isolates were exposed to increasing concentrations of benzalkonium chloride (BAC) and variations of their antibiotic susceptibilities were monitored. Strains that survived BAC exposure were analyzed at whole genome perspective using comparative genomics, and Sanger sequencing-confirmed mutations in ramR gene were identified. Next, the efflux activity in ramR-mutated strains shown as bisbenzimide accumulation and expression of genes involved in AcrAB-TolC efflux pump using quantitative reverse transcriptase PCR were determined. RESULTS: Mutation rates of evolved strains varied from 5.82 × 10-9 to 5.56 × 10-8, with fold increase from 18.55 to 1.20 when compared with strains evolved without BAC. Mutations in ramR gene were found in evolved strains. Upregulated expression and increased activity of AcrAB-TolC was observed in evolved strains, which may contribute to their increased resistance to clinically relevant antibiotics. In addition, several indels and point mutations in ramR were identified, including L158P, A37V, G42E, F45L, and R46H which have not yet been linked to antimicrobial resistance. Resistance and mutations were stable after seven consecutive cultivations without BAC exposure. These results suggest that strains with sequence type (ST) ST34 were the most prone to mutations in ramR among the three STs tested (ST34, ST19, ST36). CONCLUSIONS: This work demonstrated that disinfectants, specifically BAC forces S. Typhimurium to enter a specific evolutionary trajectory towards antibiotic resistance illustrating the side effects of long-term exposure to BAC and probably also to other disinfectants. Most significantly, this study provides new insights in understanding the emergence of antibiotic resistance in modern society.


Asunto(s)
Desinfectantes , Salmonella enterica , Humanos , Antibacterianos/farmacología , Antibacterianos/metabolismo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Compuestos de Benzalconio/farmacología , Compuestos de Benzalconio/metabolismo , Serogrupo , Farmacorresistencia Bacteriana Múltiple/genética , Desinfectantes/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pruebas de Sensibilidad Microbiana
11.
J Fungi (Basel) ; 9(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37367549

RESUMEN

Although intestinal microbiota play crucial roles in fish digestion and health, little is known about intestinal fungi in fish. This study investigated the intestinal fungal diversity of three coral reef fish (Lates calcarifer, Trachinotus blochii, and Lutjanus argentimaculatus) from the South China Sea using a culturable method. A total of 387 isolates were recovered and identified by sequencing their internal transcribed spacer sequences, belonging to 29 known fungal species. The similarity of fungal communities in the intestines of the three fish verified that the fungal colonization might be influenced by their surrounding environments. Furthermore, the fungal communities in different intestines of some fish were significantly different, and the number of yeasts in the hindgut was less than that in fore- and mid-intestines, suggesting that the distribution of fungi in fishes' intestines may be related to the physiological functions of various intestinal segments. In addition, 51.4% of tested fungal isolates exhibited antimicrobial activity against at least one marine pathogenic microorganism. Notably, isolate Aureobasidium pullulans SCAU243 exhibited strong antifungal activity against Aspergillus versicolor, and isolate Schizophyllum commune SCAU255 displayed extensive antimicrobial activity against four marine pathogenic microorganisms. This study contributed to our understanding of intestinal fungi in coral reef fish and further increased the library of fungi available for natural bioactive product screening.

12.
Compr Rev Food Sci Food Saf ; 22(4): 3212-3253, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37222539

RESUMEN

The emergence of antibiotic-resistant bacteria due to the overuse or inappropriate use of antibiotics has become a significant public health concern. The agri-food chain, which serves as a vital link between the environment, food, and human, contributes to the large-scale dissemination of antibiotic resistance, posing a concern to both food safety and human health. Identification and evaluation of antibiotic resistance of foodborne bacteria is a crucial priority to avoid antibiotic abuse and ensure food safety. However, the conventional approach for detecting antibiotic resistance heavily relies on culture-based methods, which are laborious and time-consuming. Therefore, there is an urgent need to develop accurate and rapid tools for diagnosing antibiotic resistance in foodborne pathogens. This review aims to provide an overview of the mechanisms of antibiotic resistance at both phenotypic and genetic levels, with a focus on identifying potential biomarkers for diagnosing antibiotic resistance in foodborne pathogens. Furthermore, an overview of advances in the strategies based on the potential biomarkers (antibiotic resistance genes, antibiotic resistance-associated mutations, antibiotic resistance phenotypes) for antibiotic resistance analysis of foodborne pathogens is systematically exhibited. This work aims to provide guidance for the advancement of efficient and accurate diagnostic techniques for antibiotic resistance analysis in the food industry.


Asunto(s)
Antibacterianos , Microbiología de Alimentos , Humanos , Antibacterianos/farmacología , Farmacorresistencia Microbiana , Bacterias/genética , Fenotipo , Biomarcadores
13.
Microbiol Spectr ; : e0383222, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36916935

RESUMEN

Staphylococcus aureus is a typical enterotoxin-producing bacterium that causes food poisoning. In the food industry, pasteurization is the most widely used technique for food decontamination. However, pre-exposure to an acidic environment might make bacteria more resistant to heat treatment, which could compromise the bactericidal effect of heat treatment and endanger food safety. In this work, the organic acid-induced cross-adaptation of S. aureus isolates to heat and the associated mechanisms were investigated. Cross-adaptation area analysis indicated that pre-exposure to organic acids induced cross-adaptation of S. aureus to heat in a strain-dependent manner. Compared with other strains, S. aureus strain J15 showed extremely high heat resistance after being stressed by acetic acid, citric acid, and lactic acid. S. aureus strains J19, J9, and J17 were found to be unable to develop cross-adaptation to heat with pre-exposure to acetic acid, citric acid, and lactic acid, respectively. Analysis of the phenotypic characteristics of the cell membrane demonstrated that the acid-heat-cross-adapted strain J15 retained cell membrane integrity and functions through enhanced Na+K+-ATPase and FoF1-ATPase activities. Cell membrane fatty acid analysis revealed that the ratio of anteiso to iso branched-chain fatty acids in the acid-heat-cross-adapted strain J15 decreased and the content of straight-chain fatty acids exhibited a 2.9 to 4.4% increase, contributing to the reduction in membrane fluidity. At the molecular level, fabH was overexpressed with preconditioning by organic acid, and its expression was further enhanced with subsequent heat exposure. Organic acids activated the GroESL system, which participated in the heat shock response of S. aureus to the subsequent heat stress. IMPORTANCE Cross-adaptation is one of the most important phenotypes in foodborne pathogens and poses a potential risk to food safety and human health. In this work, we found that pretreatment with acetic acid, citric acid, and lactic acid could induce subsequent heat tolerance development in S. aureus. Various S. aureus strains exhibited different acid-heat cross-adaptation areas. The acid-induced cross-adaptation to heat might be attributable to membrane integrity maintenance, stabilization of the charge equilibrium to achieve a normal internal pH, and membrane fluidity reduction achieved by decreasing the ratios of anteiso to iso fatty acids. The fabH gene, which is involved in fatty acid biosynthesis, and groES/groEL, which are related to heat shock response, contributed to the development of the acid-heat cross-adaptation phenomenon in S. aureus. The investigations of the stress cross-adaptation phenomenon in foodborne pathogens could help optimize food processing to better control S. aureus.

14.
Food Res Int ; 164: 112335, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36737928

RESUMEN

Ice is widely used in the food industry, as an ingredient (edible ice) directly added to food or as a coolant (food-contact ice) for fresh food preservation along the cold chain. However, it has been shown that food-contact ice are easily polluted by pathogens, potentially endangering the public's health. In the present study, the hygiene status of food-contact ice collected from various sources (local farmer markets, supermarkets, and restaurants) was evaluated through the quantitative estimation of total bacterial counts and coliform counts as well as the prevalence of foodborne pathogenic bacteria (Staphylococcus aureus, Vibrio parahaemolyticus, Salmonella, Listeria monocytogenes, Shigella). The average levels of total bacterial counts in the ice for preserving the aquatic products, poultry meat and livestock meat are 4.88, 4.18 and 6.11 log10 CFU/g, respectively. Over 90 % of the food-contact ice were positive for coliforms. The detection rate of S. aureus in all the food-contact ice samples was highest, followed by Salmonella, V. parahaemolyticus and L. monocytogenes, and Shigella was not detected. In addition, the bacterial community diversity of food-contact ice was analyzed with high-throughput sequencing. The dominant bacteria taxa in food-contact ice are heavily dependent on the environment of sampling sites. The predicted phenotypes of biofilm forming, oxidative stress tolerance, mobile element containing and pathogenesis were identified in the bacteria taxa of food-contact ice, which should be carefully evaluated in future work. Finally, the cross-contamination models of pathogen transfer during ice preservation were established. The results showed that the transfer rates of ice-isolated S. aureus between food and ice were significantly higher than that of V. parahaemolyticus. The binomial distribution B(n, p) exhibited a better fitness to describe the pathogen transfer during ice preservation when the transfer rate was low, in turn, the transfer rate-based probability model showed a better fit to the data when the transfer rate was high. Monte Carlo simulation with Latin-Hypercube sampling was carried out to predict the contamination levels of S. aureus and V. parahaemolyticus on food as the result of cross contamination during ice preservation ranging from -2.90 to 2.96 log10 CFU/g with a 90 % confidence interval. The findings of this work are conducive to a comprehensive understanding of the current hygiene status of food-contact ice, and lay a theoretical foundation for the risk assessment of cross-contamination during ice preservation.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Hielo , Staphylococcus aureus , Carne/microbiología , Salmonella
15.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768899

RESUMEN

The ketogenic diet (KD) has been used as a treatment for epilepsy since the 1920s, and its role in the prevention of many other diseases is now being considered. In recent years, there has been an intensive investigation on using the KD as a therapeutic approach to treat acute pathologies, including ischemic ones. However, contradictory data are observed for the effects of the KD on various organs after ischemic injury. In this review, we provide the first systematic analysis of studies conducted from 1980 to 2022 investigating the effects and main mechanisms of the KD and its mimetics on ischemia-reperfusion injury of the brain, heart, kidneys, liver, gut, and eyes. Our analysis demonstrated a high diversity of both the composition of the used KD and the protocols for the treatment of animals, which could be the reason for contradictory effects in different studies. It can be concluded that a true KD or its mimetics, such as ß-hydroxybutyrate, can be considered as positive exposure, protecting the organ from ischemia and its negative consequences, whereas the shift to a rather similar high-calorie or high-fat diet leads to the opposite effect.


Asunto(s)
Dieta Cetogénica , Epilepsia , Animales , Cuerpos Cetónicos/uso terapéutico , Dieta Cetogénica/métodos , Epilepsia/tratamiento farmacológico , Encéfalo , Isquemia/tratamiento farmacológico
16.
Water Res ; 233: 119759, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36841169

RESUMEN

Cost-effective runoff control scheme drafting involves localization, multi-sector coordination, and configuration of multifunctional infrastructures. Numerous independent variables, parameters, weights, and objectives make runoff control optimization quantitatively arduous. This study innovatively proposed a multi-objective optimization methodology for green-gray coupled runoff control infrastructure adapting spatial heterogeneity of natural endowment and urban development. The quantitative methods of multi-objective evaluation, hydrological feature partition, and pressure-adapted multi-objective weight assignment were proposed. Remote sensing inversion of water quality, hydrological model simulation (using SWAT and SWMM software), landscape pattern index calculation, life cycle cost (LCC), life cycle assessment (LCA) on ecological impact, and NSGA-II optimization algorithm were applied. Wuhan, the most water-sensitive city in China, was studied as a case. Runoff control function (RCF), capital investment (CI), and ecological return on investment (EROI) served as optimized objectives. High, medium, and low built-up regions in Wuhan urban development planning district were extracted by topographic factors and landscape patterns, which comprised 28, 34, and 38% of the case area, respectively. Three corresponding hydrological models were then built to illustrate distinct runoff control cost-efficiency in each region. Pressure distributions on runoff control, economic constraints, and ecological resource scarcity were quantitatively evaluated. And four pressure zones were clustered, which occupied 36, 29, 16, and 19% of the case area, respectively. Then the zonal weighted optimization decision-making matrix (with 3 hydrological models and 5 wt) was established by overlaying the pressure zone and built-up zone. In high, medium, and low built-up regions, optimized solutions reduced annual runoff volume by 86, 82%, and 77%The average runoff investments per square meter of impervious underlying surface in high, medium, and low built-up regions were 34.2, 18.7, and 7.9 RMB yuan, respectively. Medium and low built-up regions may only need 55 and 23% of the high built-up region for the unitary impervious underlying surface to balance runoff control and ecological benefits. Runoff control and financial utilization efficiency enhance with hydrological differentiation zones. Thus, the optimization solutions are zonal adaptive, refined, comparable, replicable, and implementable.


Asunto(s)
Administración Financiera , Remodelación Urbana , Lluvia , Ciudades , China , Movimientos del Agua
17.
J Fungi (Basel) ; 9(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36675922

RESUMEN

As one core of the Guangdong-Hong Kong-Macao Greater Bay Area (GBA), Guangdong is facing some serious coastal environmental problems. Fungi are more vulnerable to changes in coastal environments than bacteria and archaea. This study investigated the fungal diversity and composition by high-throughput sequencing and detected basic parameters of seven environmental factors (temperature, dissolved oxygen, pH, salinity, total organic carbon, total nitrogen, and total phosphorus) at 11 sites. A total of 2056 fungal operational taxonomic units (OTUs) belonging to 147 genera in 6 phyla were recovered; Archaeorhizomyces (17.5%) and Aspergillus (14.19%) were the most dominant genera. Interestingly, a total of 14 genera represented the first reports of coastal fungi in this study. Furthermore, there were nine genera of fungi that were significantly correlated with environmental factors. FUNGuild analysis indicated that saprotrophs and pathogens were the two trophic types with the highest proportions. Saprotrophs were significantly correlated with total organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP), while pathogens were significantly correlated with pH. This study provides new scientific data for the study of the diversity and composition of fungal communities in coastal ecosystems.

18.
J Hazard Mater ; 448: 130800, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36716555

RESUMEN

Disinfectant abuse poses a risk of bacterial evolution against stresses, especially during the coronavirus disease 2019 (COVID-19) pandemic. However, bacterial phenotypes, such as drug resistance and viability, are hard to access quickly. Here, we reported an allele specific isothermal RNA amplification (termed AlleRNA) assay, using an isothermal RNA amplification technique, i.e., nucleic acid sequence-based amplification (NASBA), integrated the amplification refractory mutation system (ARMS), involving the use of sequence-specific primers to allow the amplification of the targets with complete complementary sequences. AlleRNA assay enables rapid and simultaneous detection of the single nucleotide polymorphism (SNP) (a detection limit, a LOD of 0.5 % SNP) and the viability (a LOD of 80 CFU) of the quinolone resistant Salmonella enterica. With the use of AlleRNA assay, we found that the quinolone resistant S. enterica exhibited higher survival ability during exposure toquaternary ammonium salt, 75 % ethanol and peracetic acid, which might be attributed to the upregulation of stress response-associated genescompared with the susceptible counterparts. Additionally, the AlleRNA assay indicated the potential risk in a high-frequency occurrence of viable but nonculturable (VBNC) quinolone resistant S. enterica induced by disinfectants due to the depression of ATP biosynthesis. The excessive usage of disinfectants during the COVID-19 pandemic should be carefully evaluated due to the latent threat to ecological and human health.


Asunto(s)
Desinfectantes , Farmacorresistencia Bacteriana , Quinolonas , Humanos , Alelos , COVID-19/prevención & control , Desinfectantes/uso terapéutico , Desinfectantes/toxicidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Nucleótidos , Pandemias/prevención & control , Quinolonas/farmacología , ARN , ARN Bacteriano , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
19.
Food Microbiol ; 109: 104127, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36309437

RESUMEN

Salmonella spp. is one of the leading causes of foodborne outbreaks worldwide. Salmonella spp. has been associated with a variety of food sources, particularly egg products. They can enter a viable but nonculturable (VBNC) state in response to harsh stress. VBNC cells still retain membrane integrity and metabolic activity, which may pose health risks. However, the formation mechanism and resuscitation ability of VBNC cells are not well understood. In this work, Salmonella spp. cocktails, including Salmonella enterica serovar Newport and Salmonella enterica serovar Enteritidis, in liquid egg products was induced into a VBNC state by mild heat treatment, a commonly used method to inhibit the growth of pathogenic in liquid egg industry. Mild heat induced VBNC cells were found to resuscitate in liquid egg yolk (LEY) and liquid whole egg (LWE), but they failed to recover in liquid egg white (LEW). In addition, a certain number of cells remained as VBNC state after in vitro digestion. The membrane vesicle (MV) protein encoding gene pagC, two-component system encoding genes phoP/Q and sigma factor encoding gene rpoS were highly expressed in VBNC cells compared with the culturable counterparts. The results of this study can contribute to a better understanding of the health risks associated with Salmonella spp. in VBNC state and provide a theoretical basis for formation mechanism of VBNC state.


Asunto(s)
Calor , Salmonella enterica , Viabilidad Microbiana , Salmonella enteritidis/genética , Factor sigma
20.
Dis Markers ; 2022: 6779207, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35811663

RESUMEN

To investigate the efficacy of a fast rehabilitation program for the recovery of knee joint function after arthroscopic autologous hamstring tendon transplantation for reconstruction of the anterior cruciate ligament (ACL), from January 1, 2017, to March 31, 2019, a total of 65 patients with ACL injury were randomly divided into a study group and a control group. Both groups were treated with autologous hamstring tendon to reconstruct the anterior cruciate ligament, arthroscopic transplantation, and decompression techniques. The research group was treated with a fast rehabilitation program. The control group was treated with traditional rehabilitation program. Knee flexion angles were measured at 2, 4, and 8 weeks postoperatively. KT-1000 knee anterior stability was measured at 3, 6, and 12 months after operation. Knee function was assessed by subjective knee function assessment scale (IKDC) and Lysholm knee score. The knee curvature, KT-1000 measurement, IKDC score, and Lysholm score were compared between the two groups before and after treatment. KT-1000 measured value, IKDC score, and Lysholm score in 2 groups were significantly improved 3, 6, and 12 months compared with those before treatment, and the difference was statistically significant (P < 0.001). Comparison between the two groups: 2 weeks, 4 weeks, and 8 weeks after treatment, the knee curvature in the study group was better than that in the control group, and the difference was statistically significant (P < 0.001); there was no significant difference in the measured values of KT-1000 between the two groups 3, 6, and 12 months after treatment (P > 0.05); IKDC score and Lysholm score in the study group 3 and 6 months after treatment were significantly better than those in the control group, with statistical significance (P < 0.001); there was no significant difference in IKDC score and Lysholm score between the two groups 12 months after treatment (P >0.05). Autograft hamstring tendon transplantation and tense-reducing technique for anatomical reconstruction of anterior cruciate ligament under arthroscopy combined with rapid rehabilitation program can quickly, safely, and effectively restore the knee function of patients, greatly shortening the rehabilitation period of patients.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Ligamento Cruzado Anterior/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Reconstrucción del Ligamento Cruzado Anterior/métodos , Humanos , Articulación de la Rodilla/cirugía , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...