Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(4): e0285136, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37115802

RESUMEN

Madin-Darby canine kidney (MDCK) cells are one of the main cell lines used for influenza vaccine production due to their high virus yield and low mutation resistance. Due to their high tumorigenicity, the safety of vaccines produced from these cells is controversial. TGM2 is a multifunctional protein that plays an important role in the adhesion and migration of cells and is associated with tumor formation. We found that the expression level of TGM2 was significantly up-regulated in low tumorigenic MDCK cells. We first analyzed TGM2-overexpressed and knockout MDCK cells in vitro. Scratch-wound assay and Transwell chamber experiments showed that TGM2 overexpression significantly inhibited the migration and invasion of MDCK cells and significantly reduced their proliferation. TGM2 knockout significantly enhanced cell migration, invasion, and proliferation. The tumorigenesis results in nude mice were consistent with those in vitro. TGM2 knockout significantly enhanced the tumorigenesis rate of MDCK cells in nude mice. We also investigated the effects of TGM2 gene expression on the replication of the H1N1 influenza A virus in MDCK cells. The results showed that TGM2 induced the negative regulation of H1N1 replication. These findings contribute to a comprehensive understanding of the tumor regulation mechanism and biological functions of TGM2.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Animales , Perros , Ratones , Carcinogénesis/genética , Proliferación Celular , Subtipo H1N1 del Virus de la Influenza A/fisiología , Células de Riñón Canino Madin Darby , Ratones Desnudos , Proteína Glutamina Gamma Glutamiltransferasa 2/metabolismo
2.
Viruses ; 14(11)2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36423196

RESUMEN

Increasingly, attention has focused on improving vaccine production in cells using gene editing technology to specifically modify key virus regulation-related genes to promote virus replication. In this study, we used DIA proteomics analysis technology to compare protein expression differences between two groups of MDCK cells: uninfected and influenza A virus (IAV) H1N1-infected cells 16 h post infection (MOI = 0.01). Initially, 266 differentially expressed proteins were detected after infection, 157 of which were upregulated and 109 were downregulated. We screened these proteins to 23 genes related to antiviral innate immunity regulation based on functional annotation database analysis and verified the mRNA expression of these genes using qPCR. Combining our results with published literature, we focused on the proteins RSAD2, KCNN4, IDO1, and ISG20; we verified their expression using western blot, which was consistent with our proteomics results. Finally, we knocked down RSAD2 using lentiviral shRNA expression vectors and found that RSAD2 inhibition significantly increased IAV NP gene expression, effectively promoting influenza virus replication with no significant effect on cell proliferation. These results indicate that RSAD2 is potentially an effective target for establishing high-yield vaccine MDCK cell lines and will help to fully understand the interaction mechanism between host cells and influenza viruses.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Perros , Animales , Humanos , Células de Riñón Canino Madin Darby , Vacunas contra la Influenza/genética , Virus de la Influenza A/fisiología
3.
Sheng Wu Gong Cheng Xue Bao ; 38(3): 1124-1137, 2022 Mar 25.
Artículo en Chino | MEDLINE | ID: mdl-35355479

RESUMEN

Transglutaminase 2 (TGM2) is a ubiquitous multifunctional protein, which is related to the adhesion of different cells and tumor formation. Previous studies found that TGM2 is involved in the interaction between host cells and viruses, but the effect of TGM2 on the proliferation of influenza virus in cells has not been reported. To explore the effect of TGM2 during H1N1 subtype influenza virus infection, a stable MDCK cell line with TGM2 overexpression and a knockout cell line were constructed. The mRNA and protein expression levels of NP and NS1 as well as the virus titer were measured at 48 hours after pot-infection with H1N1 subtype influenza virus. The results showed that overexpression of TGM2 effectively inhibited the expression of NP and NS1 genes of H1N1 subtype influenza virus, while knockout of TGM2 up-regulated the expression of the NP and NS1 genes, and the expression of the NP at protein level was consistent with that at mRNA level. Virus proliferation curve showed that the titer of H1N1 subtype influenza virus decreased significantly upon TGM2 overexpression. On the contrary, the virus titer in TGM2 knockout cells reached the peak at 48 h, which further proved that TGM2 was involved in the inhibition of H1N1 subtype influenza virus proliferation in MDCK cells. By analyzing the expression of genes downstream of influenza virus response signaling pathway, we found that TGM2 may inhibit the proliferation of H1N1 subtype influenza virus by promoting the activation of JAK-STAT molecular pathway and inhibiting RIG-1 signaling pathway. The above findings are of great significance for revealing the mechanism underlying the interactions between host cells and virus and establishing a genetically engineering cell line for high-yield influenza vaccine production of influenza virus.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Animales , Proliferación Celular , Perros , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Células de Riñón Canino Madin Darby , Proteína Glutamina Gamma Glutamiltransferasa 2
4.
Viruses ; 14(1)2021 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-35062254

RESUMEN

Outbreaks of influenza, caused by the influenza A virus (IAV), occur almost every year in various regions worldwide, seriously endangering human health. Studies have shown that host non-coding RNA is an important regulator of host-virus interactions in the process of IAV infection. In this paper, we comprehensively analyzed the research progress on host non-coding RNAs with regard to the regulation of IAV replication. According to the regulation mode of host non-coding RNAs, the signal pathways involved, and the specific target genes, we found that a large number of host non-coding RNAs directly targeted the PB1 and PB2 proteins of IAV. Nonstructural protein 1 and other key genes regulate the replication of IAV and indirectly participate in the regulation of the retinoic acid-induced gene I-like receptor signaling pathway, toll-like receptor signaling pathway, Janus kinase signal transducer and activator of transcription signaling pathway, and other major intracellular viral response signaling pathways to regulate the replication of IAV. Based on the above findings, we mapped the regulatory network of host non-coding RNAs in the innate immune response to the influenza virus. These findings will provide a more comprehensive understanding of the function and mechanism of host non-coding RNAs in the cellular anti-virus response as well as clues to the mechanism of cell-virus interactions and the discovery of antiviral drug targets.


Asunto(s)
Interacciones Huésped-Patógeno , Virus de la Influenza A/genética , Gripe Humana/inmunología , ARN no Traducido , Replicación Viral , Antivirales/inmunología , Ciclo Celular , Humanos , Inmunidad Innata , Gripe Humana/virología , MicroARNs , ARN Circular , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...