Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur J Pharm Biopharm ; 200: 114312, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38735345

RESUMEN

BACKGROUND: Nanomedicine, as the combination of radiopharmaceutical and nanocarrier (QDs), is developed for treating cancer. Gallic acid is antimutagenic, anti-inflammatory, and anti-carcinogenic. Typical retention time of gallic acid is approximately 4 to 8 h. To increase the retention time gallic acid is converted to prodrug by adding lipophilic moieties, encapsulating in lipophilic nanoparticles, or liposome formation. Similarly, thymoquinone is powerful antioxidant, anti-apoptotic, and anti-inflammatory effect, with reduced DNA damage. METHODS: In this study, a hydrophilic drug (gallic acid) is chemically linked to the hydrophobic drug (thymohydroquinone) to overcome the limitations of co-delivery of drugs. Thymohydroquinone (THQG) as the combination of gallic acid (GA) and thymoquinone (THQ) is loaded onto the PEI functionalized antimonene quantum dots (AM-QDs) and characterized by FTIR, UV-visible spectroscopy, X-ray powder diffraction, Zeta sizer, SEM and AFM, in-vitro and in-vivo assay, and hemolysis. RESULTS: The calculated drug loading efficiency is 90 %. Drug release study suggests the drug combination is pH sensitive and it can encounters acidic pH, releasing the drug from the nanocarrier. The drug and drug-loaded nanocarrier possesses low cytotoxicity and cell viability on MCF-7 and Cal-27 cell lines. The proposed drug delivery system is radiolabeled with Iodine-131 (131I) and Technetium (99mTc) and its deposition in various organs of rats' bodies is examined by SPECT-CT and gamma camera. Hemolytic activity of 2, 4, 6, and 8 µg/mL is 1.78, 4.16, 9.77, and 15.79 %, respectively, reflecting low levels of hemolysis. The system also sustains oxidative stress in cells and environment, decreasing ROS production to shield cells and keep them healthy. CONCLUSIONS: The results of this study suggest that the proposed drug carrier system can be used as a multi-modal theragnostic agent in cancer treatment.


Asunto(s)
Ácido Gálico , Puntos Cuánticos , Animales , Ratas , Ácido Gálico/química , Ácido Gálico/farmacología , Puntos Cuánticos/química , Humanos , Concentración de Iones de Hidrógeno , Benzoquinonas/química , Benzoquinonas/administración & dosificación , Benzoquinonas/farmacología , Neoplasias/tratamiento farmacológico , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Portadores de Fármacos/química , Liberación de Fármacos , Nanomedicina Teranóstica/métodos , Línea Celular Tumoral , Masculino , Células MCF-7 , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos
2.
Int J Biol Macromol ; 269(Pt 2): 132146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38734342

RESUMEN

In this research, a sitagliptin-lignin biopolymer (SL) containing zinc selenide quantum dots (ZnSe QDs) and doxorubicin (doxo) was synthesized. The fabricated polymeric drug delivery system was characterized via FTIR, XRD, SEM, TGA, IR, and DSC. SLQD-Doxo exhibited an irregular surface with a 32 nm diameter and well-defined surface chemistry. Drug loading efficiency was assessed at different concentrations, pH levels, time intervals, and temperatures, and drug kinetics were calculated. Maximum drug release was observed at 6 µmol concentration after 24 h, pH of 6.5 and 45 °C. The maximum drug encapsulation efficiency was 81.75 %. SLQD-Doxo demonstrated 24.4 ± 1.04 % anti-inflammatory activity, and the maximum lipoxygenase inhibition in a concentration-dependent manner was 71.45 ± 2.02 %, compared to indomethacin, a standard anticancer drug. The designed system was applied to breast cancer MCF-7 cells to evaluate anticancer activity. Cytotoxicity of SLQD-Doxo resulted in 24.48 ± 1.64 dead cells and 74.39 ± 4.12 viable cells. Lignin's polyphenolic nature resulted in good antioxidant activity of LLQD-Doxo. The combination of SLQD-Doxo was appropriate for drug delivery at high temperatures and acidic pH of tumor cells compared to healthy cells.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Lignina , Fosfato de Sitagliptina , Doxorrubicina/farmacología , Doxorrubicina/química , Doxorrubicina/administración & dosificación , Humanos , Lignina/química , Lignina/farmacología , Células MCF-7 , Fosfato de Sitagliptina/química , Fosfato de Sitagliptina/farmacología , Liberación de Fármacos , Portadores de Fármacos/química , Polímeros/química , Puntos Cuánticos/química , Concentración de Iones de Hidrógeno , Antioxidantes/farmacología , Antioxidantes/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos
3.
Arch Microbiol ; 205(6): 222, 2023 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-37149838

RESUMEN

Potato crop, currently, is the staple food crop of about 1.3 billion global population. Potato is attaining even more admiration globally day by day owing to its public acceptability. However, potato sustainable production is distinctly challenged by multiple factors like diseases, pests and climate change etc. Among diseases, common scab is one of the prime threats to potato crop due to its soil-borne nature and versatility in phytotoxins' secretion. Common scab is caused multiple number of phytopathogenic streptomyces strains. Despite extensive research programs, researchers are still unable to identify a significant solution to this threat that is proliferating exceptional rate across the globe. To develop feasible remedies, adequate information regarding host-pathogen interaction should be available. This review possesses insights on existing pathogenic species, the evolution of novel pathogenic streptomyces spp. and phytotoxins produced by the pathogenic strains. Furthermore, which type of physiological, biochemical and genetic activities occur during pathogen's infestation of the host are also canvassed.


Asunto(s)
Solanum tuberosum , Streptomyces , Streptomyces/genética , Enfermedades de las Plantas , Microbiología del Suelo , Suelo
4.
Oxid Med Cell Longev ; 2018: 8367846, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29492183

RESUMEN

Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1ß, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research.


Asunto(s)
Antioxidantes/farmacología , Miel , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...