Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Soc Mass Spectrom ; 34(6): 1105-1116, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37163770

RESUMEN

Proteomics research has been transformed due to high-throughput liquid chromatography (LC-MS/MS) tandem mass spectrometry instruments combined with highly sophisticated automated sample preparation and multiplexing workflows. However, scaling proteomics experiments to large sample cohorts (hundreds to thousands) requires thoughtful quality control (QC) protocols. Robust QC protocols can help with reproducibility, quantitative accuracy, and provide opportunities for more decisive troubleshooting. Our laboratory conducted a plasma proteomics study of a cohort of N = 335 patient samples using tandem mass tag (TMTpro) 16-plex batches. Over the course of a 10-month data acquisition period for this cohort we collected 271 pooled QC LC-MS/MS result files obtained from MS/MS analysis of a patient-derived pooled plasma sample, representative of the entire cohort population. This sample was tagged with TMTzero or TMTpro reagents and used to inform the daily performance of the LC-MS/MS instruments and to allow within and across sample batch normalization. Analytical variability of a number of instrumental and data analysis metrics including protein and peptide identifications, peptide spectral matches (PSMs), number of obtained MS/MS spectra, average peptide abundance, percent of peptides with a Δ m/z between ±0.003 Da, percent of MS/MS spectra obtained at the maximum injection time, and the retention time of selected tracking peptides were evaluated to help inform the design of a robust LC-MS/MS QC workflow for use in future cohort studies. This study also led to general tips for using selected metrics to inform real-time troubleshooting of LC-MS/MS performance issues with daily QC checks.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Cromatografía Liquida/métodos , Reproducibilidad de los Resultados , Péptidos/química , Control de Calidad
2.
Alzheimers Res Ther ; 15(1): 66, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978190

RESUMEN

BACKGROUND: Both Alzheimer's disease (AD) genetic risk factors and indices of cognitive reserve (CR) influence risk of cognitive decline, but it remains unclear whether they interact. This study examined whether a CR index score modifies the relationship between AD genetic risk factors and long-term cognitive trajectories in a large sample of individuals with normal cognition. METHODS: Analyses used data from the Preclinical AD Consortium, including harmonized data from 5 longitudinal cohort studies. Participants were cognitively normal at baseline (M baseline age = 64 years, 59% female) and underwent 10 years of follow-up, on average. AD genetic risk was measured by (i) apolipoprotein-E (APOE) genetic status (APOE-ε2 and APOE-ε4 vs. APOE-ε3; N = 1819) and (ii) AD polygenic risk scores (AD-PRS; N = 1175). A CR index was calculated by combining years of education and literacy scores. Longitudinal cognitive performance was measured by harmonized factor scores for global cognition, episodic memory, and executive function. RESULTS: In mixed-effects models, higher CR index scores were associated with better baseline cognitive performance for all cognitive outcomes. APOE-ε4 genotype and AD-PRS that included the APOE region (AD-PRSAPOE) were associated with declines in all cognitive domains, whereas AD-PRS that excluded the APOE region (AD-PRSw/oAPOE) was associated with declines in executive function and global cognition, but not memory. There were significant 3-way CR index score × APOE-ε4 × time interactions for the global (p = 0.04, effect size = 0.16) and memory scores (p = 0.01, effect size = 0.22), indicating the negative effect of APOE-ε4 genotype on global and episodic memory score change was attenuated among individuals with higher CR index scores. In contrast, levels of CR did not attenuate APOE-ε4-related declines in executive function or declines associated with higher AD-PRS. APOE-ε2 genotype was unrelated to cognition. CONCLUSIONS: These results suggest that APOE-ε4 and non-APOE-ε4 AD polygenic risk are independently associated with global cognitive and executive function declines among individuals with normal cognition at baseline, but only APOE-ε4 is associated with declines in episodic memory. Importantly, higher levels of CR may mitigate APOE-ε4-related declines in some cognitive domains. Future research is needed to address study limitations, including generalizability due to cohort demographic characteristics.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Reserva Cognitiva , Humanos , Femenino , Persona de Mediana Edad , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Apolipoproteína E2/genética , Estudios Longitudinales , Apolipoproteínas E/genética , Genotipo , Apolipoproteína E4/genética , Disfunción Cognitiva/genética , Disfunción Cognitiva/psicología , Cognición
3.
medRxiv ; 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36993271

RESUMEN

Determining the genetic architecture of Alzheimer's disease (AD) pathologies can enhance mechanistic understanding and inform precision medicine strategies. Here, we performed a genome-wide association study of cortical tau quantified by positron emission tomography in 3,136 participants from 12 independent studies. The CYP1B1-RMDN2 locus was associated with tau deposition. The most significant signal was at rs2113389, which explained 4.3% of the variation in cortical tau, while APOE4 rs429358 accounted for 3.6%. rs2113389 was associated with higher tau and faster cognitive decline. Additive effects, but no interactions, were observed between rs2113389 and diagnosis, APOE4 , and Aß positivity. CYP1B1 expression was upregulated in AD. rs2113389 was associated with higher CYP1B1 expression and methylation levels. Mouse model studies provided additional functional evidence for a relationship between CYP1B1 and tau deposition but not Aß. These results may provide insight into the genetic basis of cerebral tau and novel pathways for therapeutic development in AD.

4.
Neurobiol Aging ; 124: 11-17, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36680854

RESUMEN

The vascular endothelial growth factor (VEGF) family of genes has been implicated in the clinical development of Alzheimer's Disease (AD). A previous study identified associations between gene expression of VEGF family members in the prefrontal cortex and cognitive performance and AD pathology. This study explored if those associations were also observed in the blood. Consistent with previous observations in brain tissue, higher blood gene expression of placental growth factor (PGF) was associated with a faster rate of memory decline (p=0.04). Higher protein abundance of FMS-related receptor tyrosine kinase 4 (FLT4) in blood was associated with biomarker levels indicative of lower amyloid and tau pathology, opposite the direction observed in brain. Also, higher gene expression of VEGFB in blood was associated with better baseline memory (p=0.008). Notably, we observed that higher gene expression of VEGFB in blood was associated with lower expression of VEGFB in the brain (r=-0.19, p=0.02). Together, these results suggest that the VEGFB, FLT4, and PGF alterations in the AD brain may be detectable in the blood compartment.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Femenino , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor de Crecimiento Placentario/genética , Factores de Crecimiento Endotelial Vascular , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Biomarcadores , Cognición , Péptidos beta-Amiloides , Proteínas tau/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...