Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(20): 14246-14259, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38728108

RESUMEN

The hydrogenation of CO2 holds promise for transforming the production of renewable fuels and chemicals. However, the challenge lies in developing robust and selective catalysts for this process. Transition metal oxide catalysts, particularly cobalt oxide, have shown potential for CO2 hydrogenation, with performance heavily reliant on crystal phase and morphology. Achieving precise control over these catalyst attributes through colloidal nanoparticle synthesis could pave the way for catalyst and process advancement. Yet, navigating the complexities of colloidal nanoparticle syntheses, governed by numerous input variables, poses a significant challenge in systematically controlling resultant catalyst features. We present a multivariate Bayesian optimization, coupled with a data-driven classifier, to map the synthetic design space for colloidal CoO nanoparticles and simultaneously optimize them for multiple catalytically relevant features within a target crystalline phase. The optimized experimental conditions yielded small, phase-pure rock salt CoO nanoparticles of uniform size and shape. These optimized nanoparticles were then supported on SiO2 and assessed for thermocatalytic CO2 hydrogenation against larger, polydisperse CoO nanoparticles on SiO2 and a conventionally prepared catalyst. The optimized CoO/SiO2 catalyst consistently exhibited higher activity and CH4 selectivity (ca. 98%) across various pretreatment reduction temperatures as compared to the other catalysts. This remarkable performance was attributed to particle stability and consistent H* surface coverage, even after undergoing the highest temperature reduction, achieving a more stable catalytic species that resists sintering and carbon occlusion.

2.
ACS Omega ; 8(49): 47262-47270, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38107907

RESUMEN

Solution-processed CuInSe2 films have generally relied on sulfide or sulfoselenide precursor films that, during the grain growth process, hamper the growth of thicker films and lead to the formation of a fine-grain layer. However, recent research has indicated that sulfur reduction in the precursor film modifies the grain growth mechanism and may enable the fabrication of thicker absorbers that are free of any fine-grain layer. In this work, we pursue direct solution deposition of sulfur-free CuInSe2 films from the molecular precursor approach. To this end, we tune the amine-thiol reactive solvent system and study the changes to the resulting soluble complexes through a combination of analytical techniques. We show that by reactively dissolving indium(III) selenide and selenium in solutions of n-butylamine and 1,2-ethanedithiol, a metal thiolate species is formed, and that this metal thiolate can be modified by isolation from the thiol-containing solvent via precipitation. As the quantity of selenium in the ink increases, the thiol content in the complex decreases, eventually producing soluble [InSex]- species. Extending this method to be used with copper selenide as a copper source, molecular precursor inks can be made for solution-processed, sulfur-free CuInSe2 films. We then show that these CuInSe2 precursor films can be fully coarsened without a fine-grain layer formation, even at the desired thicknesses of 2 µm and greater.

3.
Nat Nanotechnol ; 17(6): 629-636, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35437322

RESUMEN

Ion exchange membranes are widely used to selectively transport ions in various electrochemical devices. Hydroxide exchange membranes (HEMs) are promising to couple with lower cost platinum-free electrocatalysts used in alkaline conditions, but are not stable enough in strong alkaline solutions. Herein, we present a Cu2+-crosslinked chitosan (chitosan-Cu) material as a stable and high-performance HEM. The Cu2+ ions are coordinated with the amino and hydroxyl groups of chitosan to crosslink the chitosan chains, forming hexagonal nanochannels (~1 nm in diameter) that can accommodate water diffusion and facilitate fast ion transport, with a high hydroxide conductivity of 67 mS cm-1 at room temperature. The Cu2+ coordination also enhances the mechanical strength of the membrane, reduces its permeability and, most importantly, improves its stability in alkaline solution (only 5% conductivity loss at 80 °C after 1,000 h). These advantages make chitosan-Cu an outstanding HEM, which we demonstrate in a direct methanol fuel cell that exhibits a high power density of 305 mW cm-2. The design principle of the chitosan-Cu HEM, in which ion transport channels are generated in the polymer through metal-crosslinking of polar functional groups, could inspire the synthesis of many ion exchange membranes for ion transport, ion sieving, ion filtration and more.


Asunto(s)
Quitosano , Conductividad Eléctrica , Hidróxidos , Intercambio Iónico , Membranas Artificiales
4.
J Am Chem Soc ; 143(36): 14458-14463, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34463481

RESUMEN

Bi-Oxazoline (biOx) has emerged as an effective ligand framework for promoting nickel-catalyzed cross-coupling, cross-electrophile coupling, and photoredox-nickel dual catalytic reactions. This report fills the knowledge gap of the organometallic reactivity of (biOx)Ni complexes, including catalyst reduction, oxidative electrophile activation, radical capture, and reductive elimination. The biOx ligand displays no redox activity in (biOx)Ni(I) complexes, in contrast to other chelating imine and oxazoline ligands. The lack of ligand redox activity results in more negative reduction potentials of (biOx)Ni(II) complexes and accounts for the inability of zinc and manganese to reduce (biOx)Ni(II) species. On the basis of these results, we revise the formerly proposed "sequential reduction" mechanism of a (biOx)Ni-catalyzed cross-electrophile coupling reaction by excluding catalyst reduction steps.

5.
Nat Commun ; 12(1): 2322, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33875664

RESUMEN

In heterogeneous catalysis, olefin oligomerization is typically performed on immobilized transition metal ions, such as Ni2+ and Cr3+. Here we report that silica-supported, single site catalysts containing immobilized, main group Zn2+ and Ga3+ ion sites catalyze ethylene and propylene oligomerization to an equilibrium distribution of linear olefins with rates similar to that of Ni2+. The molecular weight distribution of products formed on Zn2+ is similar to Ni2+, while Ga3+ forms higher molecular weight olefins. In situ spectroscopic and computational studies suggest that oligomerization unexpectedly occurs by the Cossee-Arlman mechanism via metal hydride and metal alkyl intermediates formed during olefin insertion and ß-hydride elimination elementary steps. Initiation of the catalytic cycle is proposed to occur by heterolytic C-H dissociation of ethylene, which occurs at about 250 °C where oligomerization is catalytically relevant. This work illuminates new chemistry for main group metal catalysts with potential for development of new oligomerization processes.

6.
J Am Chem Soc ; 143(5): 2285-2292, 2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33525869

RESUMEN

Electrochemical capacitors (ECs) have emerged as reliable and fast-charging electrochemical energy storage devices that offer high power densities. Their use is still limited, nevertheless, by their relatively low energy density. Because high specific surface area and electrical conductivity are widely seen as key metrics for improving the energy density and overall performance of ECs, materials that have excellent electrical conductivities but are otherwise nonporous, such as coordination polymers (CPs), are often overlooked. Here, we report a new nonporous CP, Ni3(benzenehexathiolate) (Ni3BHT), which exhibits high electrical conductivity of over 500 S/m. When used as an electrode, Ni3BHT delivers excellent specific capacitances of 245 F/g and 426 F/cm3 in nonaqueous electrolytes. Structural and electrochemical studies relate the favorable performance to pseudocapacitive intercalation of Li+ ions between the 2D layers of Ni3BHT, a charge-storage mechanism that has thus far been documented only in inorganic materials such as TiO2, Nb2O5, and MXenes. This first demonstration of pseudocapacitive ion intercalation in nonporous CPs, a class of materials comprising thousands of members with distinct structures and compositions, provides important motivation for exploring this vast family of materials for nontraditional, high-energy pseudocapacitors.

7.
Nat Mater ; 20(2): 222-228, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33230325

RESUMEN

Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 µm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.

8.
Nat Commun ; 11(1): 5283, 2020 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077736

RESUMEN

Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells; however, their active site structures remain poorly understood. A leading postulate is that the iron-containing active sites exist primarily in a pyridinic Fe-N4 ligation environment, yet, molecular model catalysts generally feature pyrrolic coordination. Herein, we report a molecular pyridinic hexaazacyclophane macrocycle, (phen2N2)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for ORR to a typical Fe-N-C material and prototypical pyrrolic iron macrocycles. N 1s XPS and XAS signatures for (phen2N2)Fe are remarkably similar to those of Fe-N-C. Electrochemical studies reveal that (phen2N2)Fe has a relatively high Fe(III/II) potential with a correlated ORR onset potential within 150 mV of Fe-N-C. Unlike the pyrrolic macrocycles, (phen2N2)Fe displays excellent selectivity for four-electron ORR, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data demonstrate that (phen2N2)Fe is a more effective model of Fe-N-C active sites relative to the pyrrolic iron macrocycles, thereby establishing a new molecular platform that can aid understanding of this important class of catalytic materials.

9.
J Am Chem Soc ; 142(28): 12367-12373, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32532157

RESUMEN

We report on the continuous fine-scale tuning of band gaps over 0.4 eV and of the electrical conductivity of over 4 orders of magnitude in a series of highly crystalline binary alloys of two-dimensional electrically conducting metal-organic frameworks M3(HITP)2 (M = Co, Ni, Cu; HITP = 2,3,6,7,10,11-hexaiminotriphenylene). The isostructurality in the M3(HITP)2 series permits the direct synthesis of binary alloys (MxM'3-x)(HITP)2 (MM' = CuNi, CoNi, and CoCu) with metal compositions precisely controlled by precursor ratios. We attribute the continuous tuning of both band gaps and electrical conductivity to changes in free-carrier concentrations and to subtle differences in the interlayer displacement or spacing, both of which are defined by metal substitution. The activation energy of (CoxNi3-x)(HITP)2 alloys scales inversely with an increasing Ni percentage, confirming thermally activated bulk transport.

10.
Inorg Chem ; 59(12): 8240-8250, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32441926

RESUMEN

The amine-thiol solvent system has been used extensively to synthesize metal chalcogenide thin films and nanoparticles because of its ability to dissolve various metal and chalcogen precursors. While previous studies of this solvent system have focused on understanding the dissolution of metal precursors, here we provide an in-depth investigation of the dissolution of chalcogens, specifically Se and Te. Analytical techniques, including Raman, X-ray absorption, and NMR spectroscopy and high-resolution tandem mass spectrometry, were used to identify pathways for Se and Te dissolution in butylamine-ethanethiol and ethylenediamine-ethanethiol solutions. Se in monoamine-monothiol solutions was found to form ionic polyselenides free of thiol ligands, while in diamine-monothiol solutions, thiol coordination with polyselenides was predominately observed. When the relative concentration of thiol is increased to that of Se, the chain length of polyselenide species was observed to shorten. Analysis of Te dissolution in diamine-thiol solutions also suggested the formation of relatively unstable thiol-coordinated Te ions. This instability of Te ions was found to be reduced by codissolving Te with Se in diamine-thiol solutions. Analysis of the codissolved solutions revealed the presence of atomic interaction between Se and Te through the identification of Se-Te bonds. This new understanding then provided a new route to dissolve otherwise insoluble Te in butylamine-ethanethiol solutions by taking advantage of the Se2- nucleophile. Finally, the knowledge gained for chalcogen dissolutions in this solvent system allowed for controlled alloying of Se and Te in PbSenTe1-n material and also provided a general knob to alter various metal chalcogenide material syntheses.

11.
ACS Appl Energy Mater ; 3(11): 10435-10446, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38434678

RESUMEN

The design of nanoparticles (NPs) with tailored morphologies and finely tuned electronic and physical properties has become a key strategy for controlling selectivity and improving conversion efficiency in a variety of important electrocatalytic transformations. Transition metal phosphide NPs, in particular, have emerged as a versatile class of catalytic materials due to their multifunctional active sites and composition- and phase-dependent properties. Access to targeted transition metal phosphide NPs with controlled features is necessary to tune the catalytic activity. To this end, we have established a solution-synthesis route utilizing a molecular precursor containing M-P bonds to generate solid metal phosphide NPs with controlled stoichiometry and morphology. We expand here the application of molecular precursors in metal phosphide NP synthesis to include the preparation of phase-pure Cu3P NPs from the thermal decomposition of [Cu(H)(PPh3)]6. The mechanism of [Cu(H)(PPh3)]6 decomposition and subsequent formation of Cu3P was investigated through modification of the reaction parameters. Identification and optimization of the critical reaction parameters (i.e., time, temperature, and oleylamine concentration) enabled the synthesis of phase-pure 9-11 nm Cu3P NPs. To probe the multifunctionality of this materials system, Cu3P NPs were investigated as an electrocatalyst for CO2 reduction. At low overpotential (-0.30 V versus RHE) in 0.1 M KHCO3 electrolyte, Cu3P-modified carbon paper electrodes produced formate (HCOO-) at a maximum Faradaic efficiency of 8%.

12.
J Am Chem Soc ; 141(42): 16635-16642, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31509393

RESUMEN

Alloying is an important strategy for the design of catalytic materials beyond pure metals. The conventional alloy catalysts however lack precise control over the local atomic structures of active sites. Here we report on an investigation of the active-site ensemble effect in bimetallic Pd-Au electrocatalysts for CO2 reduction. A series of Pd@Au electrocatalysts are synthesized by decorating Au nanoparticles with Pd of controlled doses, giving rise to bimetallic surfaces containing Pd ensembles of various sizes. Their catalytic activity for electroreduction of CO2 to CO exhibits a nonlinear behavior in dependence of the Pd content, which is attributed to the variation of Pd ensemble size and the corresponding tuning of adsorption properties. Density functional theory calculations reveal that the Pd@Au electrocatalysts with atomically dispersed Pd sites possess lower energy barriers for activation of CO2 than pure Au and are also less poisoned by strongly binding *CO intermediates than pure Pd, with an intermediate ensemble size of active sites, such as Pd dimers, giving rise to the balance between these two rate-limiting factors and achieving the highest activity for CO2 reduction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...