Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Discov ; 13(10): 2228-2247, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37548590

RESUMEN

Therapies that enhance antitumor immunity have altered the natural history of many cancers. Consequently, leveraging nonoverlapping mechanisms to increase immunogenicity of cancer cells remains a priority. Using a novel enzymatic inhibitor of the RNA methyl-transferase METTL3, we demonstrate a global decrease in N6-methyladenosine (m6A) results in double-stranded RNA (dsRNA) formation and a profound cell-intrinsic interferon response. Through unbiased CRISPR screens, we establish dsRNA-sensing and interferon signaling are primary mediators that potentiate T-cell killing of cancer cells following METTL3 inhibition. We show in a range of immunocompetent mouse models that although METTL3 inhibition is equally efficacious to anti-PD-1 therapy, the combination has far greater preclinical activity. Using SPLINTR barcoding, we demonstrate that anti-PD-1 therapy and METTL3 inhibition target distinct malignant clones, and the combination of these therapies overcomes clones insensitive to the single agents. These data provide the mole-cular and preclinical rationale for employing METTL3 inhibitors to promote antitumor immunity in the clinic. SIGNIFICANCE: This work demonstrates that METTL3 inhibition stimulates a cell-intrinsic interferon response through dsRNA formation. This immunomodulatory mechanism is distinct from current immunotherapeutic agents and provides the molecular rationale for combination with anti-PD-1 immune-checkpoint blockade to augment antitumor immunity. This article is featured in Selected Articles from This Issue, p. 2109.


Asunto(s)
Interferones , Metiltransferasas , Animales , Ratones , Interferones/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN Bicatenario
2.
Cancer Discov ; 12(3): 774-791, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34862195

RESUMEN

Cancer cell metabolism is increasingly recognized as providing an exciting therapeutic opportunity. However, a drug that directly couples targeting of a metabolic dependency with the induction of cell death in cancer cells has largely remained elusive. Here we report that the drug-like small-molecule ironomycin reduces the mitochondrial iron load, resulting in the potent disruption of mitochondrial metabolism. Ironomycin promotes the recruitment and activation of BAX/BAK, but the resulting mitochondrial outer membrane permeabilization (MOMP) does not lead to potent activation of the apoptotic caspases, nor is the ensuing cell death prevented by inhibiting the previously established pathways of programmed cell death. Consistent with the fact that ironomycin and BH3 mimetics induce MOMP through independent nonredundant pathways, we find that ironomycin exhibits marked in vitro and in vivo synergy with venetoclax and overcomes venetoclax resistance in primary patient samples. SIGNIFICANCE: Ironomycin couples targeting of cellular metabolism with cell death by reducing mitochondrial iron, resulting in the alteration of mitochondrial metabolism and the activation of BAX/BAK. Ironomycin induces MOMP through a different mechanism to BH3 mimetics, and consequently combination therapy has marked synergy in cancers such as acute myeloid leukemia. This article is highlighted in the In This Issue feature, p. 587.


Asunto(s)
Hierro , Proteína Destructora del Antagonista Homólogo bcl-2 , Apoptosis , Muerte Celular , Humanos , Hierro/metabolismo , Mitocondrias/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
3.
Exp Hematol ; 90: 1-11, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32961299

RESUMEN

Whilst DNA cytosine methylation is the oldest and most well-studied epigenetic modification, basking in its glory days, it may be soon overshadowed by the new kid on the block: RNA adenosine methylation. This juxtaposition is indeed superficial, and a deep exploration toward the fundamental requirements for these essential epigenetic marks provides a clear perspective on their converging and synergistic roles. The recent discovery that both of these modifications are essential for preventing inappropriate activation of the intracellular innate immune responses to endogenous transcripts has provided a lot of interest in targeting them therapeutically as a means to improve cancer immunogenicity. Here we discuss the potential physiological function for DNA and RNA methylation in normal hematopoiesis and how these pervasive epigenetic marks are exploited in cancer, and provide suggestions for future research with a focus on leveraging this knowledge to uncover novel therapeutic targets.


Asunto(s)
Metilación de ADN , ADN de Neoplasias/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Hematopoyesis , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Humanos , Neoplasias/patología
4.
Mol Cell ; 78(6): 991-993, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32559426

RESUMEN

Combination therapy remains the cornerstone for cancer management, and understanding how to rationally partner drugs is imperative. In this issue of Molecular Cell, Shu et al. (2020) provide a tour de force multi-omic approach to identify synergistic pathways that increase the efficacy of BET bromodomain inhibitors in triple-negative breast cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Proteínas Nucleares
5.
Blood ; 134(2): 160-170, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31043423

RESUMEN

Pharmacologic agents that modulate ubiquitin ligase activity to induce protein degradation are a major new class of therapeutic agents, active in a number of hematologic malignancies. However, we currently have a limited understanding of the determinants of activity of these agents and how resistance develops. We developed and used a novel quantitative, targeted mass spectrometry (MS) assay to determine the relative activities, kinetics, and cell-type specificity of thalidomide and 4 analogs, all but 1 of which are in clinical use or clinical trials for hematologic malignancies. Thalidomide analogs bind the CRL4CRBN ubiquitin ligase and induce degradation of particular proteins, but each of the molecules studied has distinct patterns of substrate specificity that likely underlie the clinical activity and toxicities of each drug. Our results demonstrate that the activity of molecules that induce protein degradation depends on the strength of ligase-substrate interaction in the presence of drug, the levels of the ubiquitin ligase, and the expression level of competing substrates. These findings highlight a novel mechanism of resistance to this class of drugs mediated by competition between substrates for access to a limiting pool of the ubiquitin ligase. We demonstrate that increased expression of a nonessential substrate can lead to decreased degradation of other substrates that are critical for antineoplastic activity of the drug, resulting in drug resistance. These studies provide general rules that govern drug-dependent substrate degradation and key differences between thalidomide analog activity in vitro and in vivo.


Asunto(s)
Proteolisis/efectos de los fármacos , Talidomida/análogos & derivados , Talidomida/química , Talidomida/farmacología , Ubiquitina-Proteína Ligasas/química , Neoplasias Hematológicas/enzimología , Humanos , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/efectos de los fármacos
6.
Science ; 362(6414)2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30385546

RESUMEN

The small molecules thalidomide, lenalidomide, and pomalidomide induce the ubiquitination and proteasomal degradation of the transcription factors Ikaros (IKZF1) and Aiolos (IKZF3) by recruiting a Cys2-His2 (C2H2) zinc finger domain to Cereblon (CRBN), the substrate receptor of the CRL4CRBN E3 ubiquitin ligase. We screened the human C2H2 zinc finger proteome for degradation in the presence of thalidomide analogs, identifying 11 zinc finger degrons. Structural and functional characterization of the C2H2 zinc finger degrons demonstrates how diverse zinc finger domains bind the permissive drug-CRBN interface. Computational zinc finger docking and biochemical analysis predict that more than 150 zinc fingers bind the drug-CRBN complex in vitro, and we show that selective zinc finger degradation can be achieved through compound modifications. Our results provide a rationale for therapeutically targeting transcription factors that were previously considered undruggable.


Asunto(s)
Dedos de Zinc CYS2-HIS2 , Lenalidomida/farmacología , Péptido Hidrolasas/metabolismo , Proteolisis/efectos de los fármacos , Talidomida/análogos & derivados , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Células HEK293 , Humanos , Factor de Transcripción Ikaros/metabolismo , Proteoma/metabolismo , Talidomida/farmacología
7.
Blood ; 132(14): 1535-1544, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30064974

RESUMEN

Thalidomide and its derivatives, lenalidomide and pomalidomide, are clinically effective treatments for multiple myeloma and myelodysplastic syndrome with del(5q). These molecules lack activity in murine models, limiting investigation of their therapeutic activity or toxicity in vivo. Here, we report the development of a mouse model that is sensitive to thalidomide derivatives because of a single amino acid change in the direct target of thalidomide derivatives, cereblon (Crbn). In human cells, thalidomide and its analogs bind CRBN and recruit protein targets to the CRL4CRBN E3 ubiquitin ligase, resulting in their ubiquitination and subsequent degradation by the proteasome. We show that mice with a single I391V amino acid change in Crbn exhibit thalidomide-induced degradation of drug targets previously identified in human cells, including Ikaros (Ikzf1), Aiolos (Ikzf3), Zfp91, and casein kinase 1a1 (Ck1α), both in vitro and in vivo. We use the Crbn I391V model to demonstrate that the in vivo therapeutic activity of lenalidomide in del(5q) myelodysplastic syndrome can be explained by heterozygous expression of Ck1α in del(5q) cells. We found that lenalidomide acts on hematopoietic stem cells with heterozygous expression of Ck1α and inactivation of Trp53 causes lenalidomide resistance. We further demonstrate that Crbn I391V is sufficient to confer thalidomide-induced fetal loss in mice, capturing a major toxicity of this class of drugs. Further study of the Crbn I391V model will provide valuable insights into the in vivo efficacy and toxicity of this class of drugs.


Asunto(s)
Antineoplásicos/farmacología , Lenalidomida/farmacología , Síndromes Mielodisplásicos/tratamiento farmacológico , Proteínas del Tejido Nervioso/genética , Mutación Puntual , Talidomida/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Antineoplásicos/química , Quinasa de la Caseína I/metabolismo , Modelos Animales de Enfermedad , Femenino , Hematopoyesis/efectos de los fármacos , Lenalidomida/química , Masculino , Ratones , Ratones Endogámicos C57BL , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Talidomida/análogos & derivados
8.
PLoS One ; 12(9): e0184732, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28886201

RESUMEN

TNF is a pro-inflammatory cytokine produced by both lymphoid and non-lymphoid cells. As a consequence of the widespread expression of its receptors (TNFR1 and 2), TNF plays a role in many important biological processes. In the context of influenza A virus (IAV) infection, TNF has variably been implicated in mediating immunopathology as well as suppression of the immune response. Although a number of cell types are able to produce TNF, the ability of CD8+ T cells to produce TNF following viral infection is a hallmark of their effector function. As such, the regulation and role of CD8+ T cell-derived TNF following viral infection is of great interest. Here, we show that the biphasic production of TNF by CD8+ T cells following in vitro stimulation corresponds to distinct patterns of epigenetic modifications. Further, we show that a global loss of TNF during IAV infection results in an augmentation of the peripheral virus-specific CD8+ T cell response. Subsequent adoptive transfer experiments demonstrated that this attenuation of the CD8+ T cell response was largely, but not exclusively, conferred by extrinsic TNF, with intrinsically-derived TNF making only modest contributions. In conclusion, TNF exerts an immunoregulatory role on CD8+ T cell responses following IAV infection, an effect that is largely mediated by extrinsically-derived TNF.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Animales , Inmunoprecipitación de Cromatina , Femenino , Virus de la Influenza A/patogenicidad , Ratones , Ratones Endogámicos C57BL , ARN Polimerasa II/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo
9.
Genome Biol ; 18(1): 166, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28874170

RESUMEN

BACKGROUND: Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. RESULTS: We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1 E861A/E861A Ifih1 -/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1 E861A/E861A Ifih1 -/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1 -/- and Adar1 E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1 +/+ and Ifih1 -/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. CONCLUSIONS: These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions.


Asunto(s)
Adenosina Desaminasa/metabolismo , Homeostasis/genética , Edición de ARN , Adenosina/metabolismo , Adenosina Desaminasa/genética , Alelos , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Femenino , Crecimiento y Desarrollo/genética , Inmunidad Innata/genética , Inosina/metabolismo , Helicasa Inducida por Interferón IFIH1/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Transcriptoma
10.
Exp Hematol ; 44(10): 947-63, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27373493

RESUMEN

Adenosine deaminases that act on RNA (ADARs) convert adenosine residues to inosine in double-stranded RNA. In vivo, ADAR1 is essential for the maintenance of hematopoietic stem/progenitors. Whether other hematopoietic cell types also require ADAR1 has not been assessed. Using erythroid- and myeloid-restricted deletion of Adar1, we demonstrate that ADAR1 is dispensable for myelopoiesis but is essential for normal erythropoiesis. Adar1-deficient erythroid cells display a profound activation of innate immune signaling and high levels of cell death. No changes in microRNA levels were found in ADAR1-deficient erythroid cells. Using an editing-deficient allele, we demonstrate that RNA editing is the essential function of ADAR1 during erythropoiesis. Mapping of adenosine-to-inosine editing in purified erythroid cells identified clusters of hyperedited adenosines located in long 3'-untranslated regions of erythroid-specific transcripts and these are ADAR1-specific editing events. ADAR1-mediated RNA editing is essential for normal erythropoiesis.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/genética , Eritropoyesis , Inosina/genética , Edición de ARN , Adenosina Desaminasa/genética , Animales , Análisis por Conglomerados , Índices de Eritrocitos , Células Eritroides/metabolismo , Eritropoyesis/genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Inactivación de Genes , Granulocitos/metabolismo , Trasplante de Células Madre Hematopoyéticas , Interferones/metabolismo , Ratones , MicroARNs/genética , Mielopoyesis/genética , Especificidad de Órganos , Fenotipo , Proteínas de Unión al ARN/genética , Receptores de Interferón/metabolismo , Retroelementos , Transducción de Señal , Transcripción Genética
11.
Wiley Interdiscip Rev RNA ; 7(2): 157-72, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26692549

RESUMEN

The conversion of genomically encoded adenosine to inosine in dsRNA is termed as A-to-I RNA editing. This process is catalyzed by two of the three mammalian ADAR proteins (ADAR1 and ADAR2) both of which have essential functions for normal organismal homeostasis. The phenotype of ADAR2 deficiency can be primarily ascribed to a lack of site-selective editing of a single transcript in the brain. In contrast, the biology and substrates responsible for the Adar1(-/-) phenotype have remained more elusive. Several recent studies have identified that a feature of absence or reductions of ADAR1 activity, conserved across human and mouse models, is a profound activation of interferon-stimulated gene signatures and innate immune responses. Further analysis of this observation has lead to the conclusion that editing by ADAR1 is required to prevent activation of the cytosolic innate immune system, primarily focused on the dsRNA sensor MDA5 and leading to downstream signaling via MAVS. The delineation of this mechanism places ADAR1 at the interface between the cells ability to differentiate self- from non-self dsRNA. Based on MDA5 dsRNA recognition requisites, the mechanism indicates that the type of dsRNA must fulfil a particular structural characteristic, rather than a sequence-specific requirement. While additional studies are required to molecularly verify the genetic model, the observations to date collectively identify A-to-I editing by ADAR1 as a key modifier of the cellular response to endogenous dsRNA.


Asunto(s)
Adenosina Desaminasa/metabolismo , Sistema Inmunológico/fisiología , Inosina/metabolismo , Proteínas de Unión al ARN/metabolismo , Adenosina Desaminasa/genética , Animales , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Estudio de Asociación del Genoma Completo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Helicasa Inducida por Interferón IFIH1/metabolismo , Interferones/metabolismo , Modelos Animales , Fenotipo , Edición de ARN , ARN Bicatenario/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Retroelementos/genética , Transcripción Genética , Activación Transcripcional
12.
Science ; 349(6252): 1115-20, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26275108

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a highly prevalent posttranscriptional modification of RNA, mediated by ADAR (adenosine deaminase acting on RNA) enzymes. In addition to RNA editing, additional functions have been proposed for ADAR1. To determine the specific role of RNA editing by ADAR1, we generated mice with an editing-deficient knock-in mutation (Adar1(E861A), where E861A denotes Glu(861)→Ala(861)). Adar1(E861A/E861A) embryos died at ~E13.5 (embryonic day 13.5), with activated interferon and double-stranded RNA (dsRNA)-sensing pathways. Genome-wide analysis of the in vivo substrates of ADAR1 identified clustered hyperediting within long dsRNA stem loops within 3' untranslated regions of endogenous transcripts. Finally, embryonic death and phenotypes of Adar1(E861A/E861A) were rescued by concurrent deletion of the cytosolic sensor of dsRNA, MDA5. A-to-I editing of endogenous dsRNA is the essential function of ADAR1, preventing the activation of the cytosolic dsRNA response by endogenous transcripts.


Asunto(s)
Adenosina Desaminasa/metabolismo , ARN Helicasas DEAD-box/metabolismo , Pérdida del Embrión/genética , Edición de ARN , ARN Bicatenario/metabolismo , Regiones no Traducidas 3' , Adenosina/genética , Adenosina Desaminasa/genética , Animales , ARN Helicasas DEAD-box/genética , Eliminación de Gen , Técnicas de Sustitución del Gen , Inosina/genética , Helicasa Inducida por Interferón IFIH1 , Ratones , Ratones Mutantes , Mutación , Conformación de Ácido Nucleico , ARN Bicatenario/química , Transcripción Genética
13.
Haematologica ; 99(4): 647-55, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24415629

RESUMEN

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced a gene signature associated with hematopoietic stem cells and myeloid differentiation, as well as hepatocyte growth factor signaling. Here we demonstrate that, in contrast to what has generally been assumed, the significant impact of SKI on hematopoiesis is independent of its ability to inhibit TGF-beta signaling. Instead, myeloid progenitors expressing SKI are partially dependent on functional hepatocyte growth factor signaling. Collectively our results demonstrate that SKI is an important regulator of hematopoietic stem cell activity and its overexpression leads to myeloproliferative disease.


Asunto(s)
Proteínas de Unión al ADN/genética , Células Madre Hematopoyéticas/metabolismo , Trastornos Mieloproliferativos/genética , Proteínas Proto-Oncogénicas/genética , Animales , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Eritropoyesis/genética , Expresión Génica , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Linfopoyesis/genética , Ratones , Mielopoyesis/genética , Trastornos Mieloproliferativos/metabolismo , Fenotipo , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Activación Transcripcional , Factor de Crecimiento Transformador beta/metabolismo
14.
Genom Data ; 2: 189-91, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26484093

RESUMEN

The proto-oncogene SKI is highly expressed in human myeloid leukemia and also in murine hematopoietic stem cells. However, its operative relevance in these cells remains elusive. We have over-expressed SKI to define its intrinsic role in hematopoiesis and myeloid neoplasms, which resulted in a robust competitive advantage upon transplantation, a complete dominance of the stem and progenitor compartments, and a marked enhancement of myeloid differentiation at the expense of other lineages. Accordingly, enforced expression of SKI induced gene signatures associated with hematopoietic stem cells and myeloid differentiation. Here we provide detailed experimental methods and analysis for the gene expression profiling described in our recently published study of Singbrant et al. (2014) in Haematologica. Our data sets (available at http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39457) provide a resource for exploring the underlying molecular mechanisms of the involvement of the proto-oncogene SKI in hematopoietic stem cell function and development of myeloid neoplasms.

15.
Curr Top Microbiol Immunol ; 353: 197-220, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-21725896

RESUMEN

RNA editing by deamination of adenosine to inosine (A-to-I editing) is a physiologically important posttranscriptional mechanism that can regulate expression of genes by modifying their transcripts. A-to-I editing is mediated by adenosine deaminases acting on RNA (ADAR) that can catalytically exchange adenosines to inosines, with varying efficiency, depending on the structure of the RNA substrates. Significant progress in understanding the biological function of mammalian ADARs has been made in the past decade by the creation and analysis of gene-targeted mice with disrupted or modified ADAR alleles. These studies have revealed important roles of ADARs in neuronal and hematopoietic tissue during embryonic and postnatal stages of mouse development.


Asunto(s)
Adenosina Desaminasa/fisiología , Desarrollo Embrionario , Elementos Alu , Esclerosis Amiotrófica Lateral/etiología , Animales , Hematopoyesis , Ratones , MicroARNs/genética , Edición de ARN , Proteínas de Unión al ARN
16.
Blood ; 117(21): 5631-42, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21421837

RESUMEN

Erythropoietin (Epo) has been used in the treatment of anemia resulting from numerous etiologies, including renal disease and cancer. However, its effects are controversial and the expression pattern of the Epo receptor (Epo-R) is debated. Using in vivo lineage tracing, we document that within the hematopoietic and mesenchymal lineage, expression of Epo-R is essentially restricted to erythroid lineage cells. As expected, adult mice treated with a clinically relevant dose of Epo had expanded erythropoiesis because of amplification of committed erythroid precursors. Surprisingly, we also found that Epo induced a rapid 26% loss of the trabecular bone volume and impaired B-lymphopoiesis within the bone marrow microenvironment. Despite the loss of trabecular bone, hematopoietic stem cell populations were unaffected. Inhibition of the osteoclast activity with bisphosphonate therapy blocked the Epo-induced bone loss. Intriguingly, bisphosphonate treatment also reduced the magnitude of the erythroid response to Epo. These data demonstrate a previously unrecognized in vivo regulatory network coordinating erythropoiesis, B-lymphopoiesis, and skeletal homeostasis. Importantly, these findings may be relevant to the clinical application of Epo.


Asunto(s)
Linfocitos B/metabolismo , Médula Ósea/efectos de los fármacos , Huesos/metabolismo , Eritropoyesis/fisiología , Eritropoyetina/farmacología , Homeostasis , Linfopoyesis/fisiología , Animales , Médula Ósea/metabolismo , Remodelación Ósea/fisiología , Células Cultivadas , Ensayo de Inmunoadsorción Enzimática , Eritroblastos/metabolismo , Citometría de Flujo , Expresión Génica , Humanos , Masculino , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptores de Eritropoyetina/metabolismo , Proteínas Recombinantes , Bazo/citología , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA