Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Cell Environ ; 45(2): 512-527, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34719040

RESUMEN

Nitrogen (N) and phosphorus (P) are among the most important macronutrients for plant growth and development, and the most widely used as fertilizers. Understanding how plants sense and respond to N and P deficiency is essential to optimize and reduce the use of chemical fertilizers. Strigolactones (SLs) are phytohormones acting as modulators and sensors of plant responses to P deficiency. In the present work, we assess the potential role of SLs in N starvation and in the N-P signalling interplay. Physiological, transcriptional and metabolic responses were analysed in wild-type and SL-deficient tomato plants grown under different P and N regimes, and in plants treated with a short-term pulse of the synthetic SL analogue 2'-epi-GR24. The results evidence that plants prioritize N over P status by affecting SL biosynthesis. We also show that SLs modulate the expression of key regulatory genes of phosphate and nitrate signalling pathways, including the N-P integrators PHO2 and NIGT1/HHO. The results support a key role for SLs as sensors during early plant responses to both N and phosphate starvation and mediating the N-P signalling interplay, indicating that SLs are involved in more physiological processes than so far proposed.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Nitrógeno/fisiología , Fósforo/fisiología , Transducción de Señal , Solanum lycopersicum/fisiología
2.
Front Plant Sci ; 13: 1094194, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684723

RESUMEN

The use of arbuscular mycorrhizal (AM) fungi has great potential, being used as biostimulants, biofertilizers and bioprotection agents in agricultural and natural ecosystems. However, the application of AM fungal inoculants is still challenging due to the variability of results when applied in production systems. This variability is partly due to differences in symbiosis establishment. Reducing such variability and promoting symbiosis establishment is essential to improve the efficiency of the inoculants. In addition to strigolactones, flavonoids have been proposed to participate in the pre-symbiotic plant-AM fungus communication in the rhizosphere, although their role is still unclear. Here, we studied the specific function of flavonoids as signaling molecules in AM symbiosis. For that, both in vitro and in planta approaches were used to test the stimulatory effect of an array of different subclasses of flavonoids on Rhizophagus irregularis spore germination and symbiosis establishment, using physiological doses of the compounds. We show that the flavone chrysin and the flavonols quercetin and rutin were able to promote spore germination and root colonization at low doses, confirming their role as pre-symbiotic signaling molecules in AM symbiosis. The results pave the way to use these flavonoids in the formulation of AM fungal-based products to promote the symbiosis. This can improve the efficiency of commercial inoculants, and therefore, help to implement their use in sustainable agriculture.

3.
J Exp Bot ; 72(13): 5038-5050, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-33884424

RESUMEN

Plant association with arbuscular mycorrhizal fungi (AMF) can increase their ability to overcome multiple stresses, but their impact on plant interactions with herbivorous insects is controversial. Here we show higher mortality of the leaf-chewer Spodoptera exigua when fed on tomato plants colonized by the AMF Funneliformis mosseae, evidencing mycorrhiza-induced resistance. In search of the underlying mechanisms, an untargeted metabolomic analysis through ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS) was performed. The results showed that mycorrhizal symbiosis had a very limited impact on the leaf metabolome in the absence of stress, but significantly modulated the response to herbivory in the damaged area. A cluster of over accumulated metabolites was identified in those leaflets damaged by S. exigua feeding in mycorrhizal plants, while unwounded distal leaflets responded similar to those from non-mycorrhizal plants. These primed-compounds were mostly related to alkaloids, fatty acid derivatives and phenylpropanoid-polyamine conjugates. The deleterious effect on larval survival of some of these compounds, including the alkaloid physostigmine, the fatty acid derivatives 4-oxododecanedioic acid and azelaic acid, was confirmed. Thus, our results evidence the impact of AMF on metabolic reprograming upon herbivory that leads to a primed accumulation of defensive compounds.


Asunto(s)
Micorrizas , Solanum lycopersicum , Animales , Cromatografía Liquida , Hongos , Herbivoria , Simbiosis , Espectrometría de Masas en Tándem
4.
Trends Plant Sci ; 25(12): 1215-1226, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32828689

RESUMEN

Plant-microbe-arthropod (PMA) three-way interactions have important implications for plant health. However, our poor understanding of the underlying regulatory mechanisms hampers their biotechnological applications. To this end, we searched for potential common patterns in plant responses regarding taxonomic groups or lifestyles. We found that most signaling modules regulating two-way interactions also operate in three-way interactions. Furthermore, the relative contribution of signaling modules to the final plant response cannot be directly inferred from two-way interactions. Moreover, our analyses show that three-way interactions often result in the activation of additional pathways, as well as in changes in the speed or intensity of defense activation. Thus, detailed, basic knowledge of plant-microbe-arthropod regulation will be essential for the design of environmentally friendly crop management strategies.


Asunto(s)
Artrópodos , Animales , Plantas , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...