Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 26(20): 14745-14753, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38716658

RESUMEN

Strong light-matter interactions have attracted much attention as a means to control the physical/chemical properties of organic semiconducting materials with light-matter hybrids called polaritons. To unveil the processes under strong coupling, studies on the dynamics of polaritons are of particular importance. While highly condensed molecular materials with large dipole density are ideal to achieve strong coupling, the emission properties of such films often become a mixture of monomeric and excimeric components, making the role of excimers unclear. Here, we use amorphous neat films of a new bis(phenylethynyl anthracene) derivative showing only excimer emission and investigate the excited-state dynamics of a series of strongly coupled microcavities, with each cavity being characterised by a different exciton-photon detuning. A time-resolved photoluminescence study shows that the excimer radiatively pumps the lower polariton in the relaxation process and the decay profile reflects the density of states. The delayed emission derived from triplet-triplet annihilation is not sensitive to the cavity environment, possibly due to the rapid excimer formation. Our results highlight the importance of controlling intermolecular interactions towards rational design of organic exciton-polariton devices, whose performance depends on efficient polariton relaxation pathways.

2.
Small ; : e2311109, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597752

RESUMEN

Controlling the nanomorphology in bulk heterojunction photoactive blends is crucial for optimizing the performance and stability of organic photovoltaic (OPV) technologies. A promising approach is to alter the drying dynamics and consequently, the nanostructure of the blend film using solvent additives such as 1,8-diiodooctane (DIO). Although this approach is demonstrated extensively for OPV systems incorporating fullerene-based acceptors, it is unclear how solvent additive processing influences the morphology and stability of nonfullerene acceptor (NFA) systems. Here, small angle neutron scattering (SANS) is used to probe the nanomorphology of two model OPV systems processed with DIO: a fullerene-based system (PBDB-T:PC71BM) and an NFA-based system (PBDB-T:ITIC). To overcome the low intrinsic neutron scattering length density contrast in polymer:NFA blend films, the synthesis of a deuterated NFA analog (ITIC-d52) is reported. Using SANS, new insights into the nanoscale evolution of fullerene and NFA-based systems are provided by characterizing films immediately after fabrication, after thermal annealing, and after aging for 1 year. It is found that DIO processing influences fullerene and NFA-based systems differently with NFA-based systems characterized by more phase-separated domains. After long-term aging, SANS reveals both systems demonstrate some level of thermodynamic induced domain coarsening.

3.
J Chem Phys ; 159(23)2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38112504

RESUMEN

Strong coupling of a confined optical field to the excitonic or vibronic transitions of a molecular material results in the formation of new hybrid states called polaritons. Such effects have been extensively studied in Fabry-Pèrot microcavity structures where an organic material is placed between two highly reflective mirrors. Recently, theoretical and experimental evidence has suggested that strong coupling can be used to modify chemical reactivity as well as molecular photophysical functionalities. However, the geometry of conventional microcavity structures limits the ability of molecules "encapsulated" in a cavity to interact with their local environment. Here, we fabricate mirrorless organic membranes that utilize the refractive index contrast between the organic active material and its surrounding medium to confine an optical field with Q-factor values up to 33. Using angle-resolved white light reflectivity measurements, we confirm that our structures operate in the strong coupling regime, with Rabi-splitting energies between 60 and 80 meV in the different structures studied. The experimental results are matched by transfer matrix and coupled oscillator models that simulate the various polariton states of the free standing membranes. Our work demonstrates that mechanically flexible and easy-to-fabricate free standing membranes can support strong light-matter coupling, making such simple and versatile structures highly promising for a range of polariton applications.

4.
Phys Rev Lett ; 131(18): 186902, 2023 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-37977614

RESUMEN

The development of high-speed, all-optical polariton logic devices underlies emerging unconventional computing technologies and relies on advancing techniques to reversibly manipulate the spatial extent and energy of polartion condensates. We investigate active spatial control of polariton condensates independent of the polariton, gain-inducing excitation profile. This is achieved by introducing an extra intracavity semiconductor layer, nonresonant to the cavity mode. Partial saturation of the optical absorption in the uncoupled layer enables the ultrafast modulation of the effective refractive index and, through excited-state absorption, the polariton dissipation. Utilizing an intricate interplay of these mechanisms, we demonstrate control over the spatial profile, density, and energy of a polariton condensate at room temperature.

5.
ACS Appl Mater Interfaces ; 15(33): 39625-39635, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37428479

RESUMEN

The power conversion efficiencies (PCEs) of organic solar cells (OSCs) have risen dramatically since the introduction of the "Y-series" of non-fullerene acceptors. However, the demonstration of rapid scalable deposition techniques to deposit such systems is rare. Here, for the first time, we demonstrate the deposition of a Y-series-based system using ultrasonic spray coating─a technique with the potential for significantly faster deposition speeds than most traditional meniscus-based methods. Through the use of an air-knife to rapidly remove the casting solvent, we can overcome film reticulation, allowing the drying dynamics to be controlled without the use of solvent additives, heating the substrate, or heating the casting solution. The air-knife also facilitates the use of a non-halogenated, low-toxicity solvent, resulting in industrially relevant, spray-coated PM6:DTY6 devices with PCEs of up to 14.1%. We also highlight the obstacles for scalable coating of Y-series-based solar cells, in particular the influence of slower drying times on blend morphology and crystallinity. This work demonstrates the compatibility of ultrasonic spray coating, and use of an air-knife, with high-speed, roll-to-roll OSC manufacturing techniques.

6.
Nat Commun ; 14(1): 3818, 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369664

RESUMEN

Nonlinear interactions between excitons strongly coupled to light are key for accessing quantum many-body phenomena in polariton systems. Atomically-thin two-dimensional semiconductors provide an attractive platform for strong light-matter coupling owing to many controllable excitonic degrees of freedom. Among these, the recently emerged exciton hybridization opens access to unexplored excitonic species, with a promise of enhanced interactions. Here, we employ hybridized interlayer excitons (hIX) in bilayer MoS2 to achieve highly nonlinear excitonic and polaritonic effects. Such interlayer excitons possess an out-of-plane electric dipole as well as an unusually large oscillator strength allowing observation of dipolar polaritons (dipolaritons) in bilayers in optical microcavities. Compared to excitons and polaritons in MoS2 monolayers, both hIX and dipolaritons exhibit ≈ 8 times higher nonlinearity, which is further strongly enhanced when hIX and intralayer excitons, sharing the same valence band, are excited simultaneously. This provides access to an unusual nonlinear regime which we describe theoretically as a mixed effect of Pauli exclusion and exciton-exciton interactions enabled through charge tunnelling. The presented insight into many-body interactions provides new tools for accessing few-polariton quantum correlations.

7.
Adv Mater ; : e2209950, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37001880

RESUMEN

Integrating photovoltaic devices onto the surface of carbon-fiber-reinforced polymer substrates should create materials with high mechanical strength that are also able to generate electrical power. Such devices are anticipated to find ready applications as structural, energy-harvesting systems in both the automotive and aeronautical sectors. Here, the fabrication of triple-cation perovskite n-i-p solar cells onto the surface of planarized carbon-fiber-reinforced polymer substrates is demonstrated, with devices utilizing a transparent top ITO contact. These devices also contain a "wrinkled" SiO2 interlayer placed between the device and substrate that alleviates thermally induced cracking of the bottom ITO layer. Devices are found to have a maximum stabilized power conversion efficiency of 14.5% and a specific power (power per weight) of 21.4 W g-1 (without encapsulation), making them highly suitable for mobile power applications.

8.
ACS Photonics ; 9(11): 3563-3572, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36411818

RESUMEN

Fourier-plane microscopy is a powerful tool for measuring the angular optical response of a plethora of materials and photonic devices. Among them, optical microcavities feature distinctive energy-momentum dispersions, crucial for a broad range of fundamental studies and applications. However, measuring the whole momentum space (k-space) with sufficient spectral resolution using standard spectroscopic techniques is challenging, requiring long and alignment-sensitive scans. Here, we introduce a k-space hyperspectral microscope, which uses a common-path birefringent interferometer to image photoluminescent organic microcavities, obtaining an angle- and wavelength-resolved view of the samples in only one measurement. The exceptional combination of angular and spectral resolution of our technique allows us to reconstruct a three-dimensional (3D) map of the cavity dispersion in the energy-momentum space, revealing the polarization-dependent behavior of the resonant cavity modes. Furthermore, we apply our technique for the characterization of a dielectric nanodisk metasurface, evidencing the angular and spectral behavior of its anapole mode. This approach is able to provide a complete optical characterization for materials and devices with nontrivial angle-/wavelength-dependent properties, fundamental for future developments in the fields of topological photonics and optical metamaterials.

9.
Molecules ; 27(20)2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36296684

RESUMEN

Molecular dyes are finding more and more applications in photonics and quantum technologies, such as polaritonic optical microcavities, organic quantum batteries and single-photon emitters for quantum sensing and metrology. For all these applications, it is of crucial importance to characterize the dephasing mechanisms. In this work we use two-dimensional electronic spectroscopy (2DES) to study the temperature dependent dephasing processes in the prototypical organic dye Lumogen-F orange. We model the 2DES maps using the Bloch equations for a two-level system and obtain a dephasing time T2 = 53 fs at room temperature, which increases to T2 = 94 fs at 86 K. Furthermore, spectral diffusion processes are observed and modeled by a combination of underdamped and overdamped Brownian oscillators. Our results provide useful design parameters for advanced optoelectronic and photonic devices incorporating dye molecules.


Asunto(s)
Citrus sinensis , Colorantes , Análisis Espectral , Difusión , Electrónica
10.
ACS Appl Mater Interfaces ; 14(33): 37587-37594, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-35920712

RESUMEN

Spray coating is an industrially mature technique used to deposit thin films that combines high throughput with the ability to coat nonplanar surfaces. Here, we explore the use of ultrasonic spray coating to fabricate perovskite solar cells (PSCs) over rigid, nonplanar surfaces without problems caused by solution dewetting and subsequent "run-off". Encouragingly, we find that PSCs can be spray-coated using our processes onto glass substrates held at angles of inclination up to 45° away from the horizontal, with such devices having comparable power conversion efficiencies (up to 18.3%) to those spray-cast onto horizontal substrates. Having established that our process can be used to create PSCs on surfaces that are not horizontal, we fabricate devices over a convex glass substrate, with devices having a maximum power conversion efficiency of 12.5%. To our best knowledge, this study represents the first demonstration of a rigid, curved perovskite solar cell. The integration of perovskite photovoltaics onto curved surfaces will likely find direct applications in the aerospace and automotive sectors.

11.
Adv Sci (Weinh) ; 9(21): e2200366, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35599384

RESUMEN

Optimizing the orientation, crystallinity, and domain size of components within organic photovoltaic (OPV) devices is key to maximizing their performance. Here a broadly applicable approach for enhancing the morphology of bulk heterojunction OPV devices using metal-organic nanosheets (MONs) as additives is demonstrated. It is shown that addition of porphyrin-based MONs to devices with fully amorphous donor polymers lead to small improvements in performance attributed to increased light absorption due to nanosheets. However, devices based on semi-crystalline polymers show remarkable improvements in power conversion efficiency (PCE), more than doubling in some cases compared to reference devices without nanosheets. In particular, this approach led to the development of PffBT4T2OD-MON-PCBM device with a PCE of 12.3%, which to the authors' knowledge is the highest performing fullerene based OPV device reported in literature to date. Detailed analysis of these devices shows that the presence of the nanosheets results in a higher fraction of face-on oriented polymer crystals in the films. These results therefore demonstrate the potential of this highly tunable class of two-dimensional nanomaterials as additives for enhancing the morphology, and therefore performance, of semi-crystalline organic electronic devices.

12.
Adv Sci (Weinh) ; 9(14): e2104848, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35142096

RESUMEN

Self-assembled monolayers (SAMs) are becoming widely utilized as hole-selective layers in high-performance p-i-n architecture perovskite solar cells. Ultrasonic spray coating and airbrush coating are demonstrated here as effective methods to deposit MeO-2PACz; a carbazole-based SAM. Potential dewetting of hybrid perovskite precursor solutions from this layer is overcome using optimized solvent rinsing protocols. The use of air-knife gas-quenching is then explored to rapidly remove the volatile solvent from an MAPbI3 precursor film spray-coated onto an MeO-2PACz SAM, allowing fabrication of p-i-n devices with power conversion efficiencies in excess of 20%, with all other layers thermally evaporated. This combination of deposition techniques is consistent with a rapid, roll-to-roll manufacturing process for the fabrication of large-area solar cells.

13.
Sci Adv ; 8(2): eabk3160, 2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35030030

RESUMEN

The rate at which matter emits or absorbs light can be modified by its environment, as markedly exemplified by the widely studied phenomenon of superradiance. The reverse process, superabsorption, is harder to demonstrate because of the challenges of probing ultrafast processes and has only been seen for small numbers of atoms. Its central idea­superextensive scaling of absorption, meaning larger systems absorb faster­is also the key idea underpinning quantum batteries. Here, we implement experimentally a paradigmatic model of a quantum battery, constructed of a microcavity enclosing a molecular dye. Ultrafast optical spectroscopy allows us to observe charging dynamics at femtosecond resolution to demonstrate superextensive charging rates and storage capacity, in agreement with our theoretical modeling. We find that decoherence plays an important role in stabilizing energy storage. Our work opens future opportunities for harnessing collective effects in light-matter coupling for nanoscale energy capture, storage, and transport technologies.

14.
Nat Commun ; 12(1): 6519, 2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764252

RESUMEN

Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s-1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.

15.
Sci Rep ; 11(1): 20879, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686707

RESUMEN

We have developed a simplified approach to fabricate high-reflectivity mirrors suitable for applications in a strongly-coupled organic-semiconductor microcavity. Such mirrors are based on a small number of quarter-wave dielectric pairs deposited on top of a thick silver film that combine high reflectivity and broad reflectivity bandwidth. Using this approach, we construct a microcavity containing the molecular dye BODIPY-Br in which the bottom cavity mirror is composed of a silver layer coated by a SiO2 and a Nb2O5 film, and show that this cavity undergoes polariton condensation at a similar threshold to that of a control cavity whose bottom mirror consists of ten quarter-wave dielectric pairs. We observe, however, that the roughness of the hybrid mirror-caused by limited adhesion between the silver and the dielectric pair-apparently prevents complete collapse of the population to the ground polariton state above the condensation threshold.

16.
J Chem Phys ; 155(15): 154701, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34686047

RESUMEN

Strong light-matter coupling to form exciton- and vibropolaritons is increasingly touted as a powerful tool to alter the fundamental properties of organic materials. It is proposed that these states and their facile tunability can be used to rewrite molecular potential energy landscapes and redirect photophysical pathways, with applications from catalysis to electronic devices. Crucial to their photophysical properties is the exchange of energy between coherent, bright polaritons and incoherent dark states. One of the most potent tools to explore this interplay is transient absorption/reflectance spectroscopy. Previous studies have revealed unexpectedly long lifetimes of the coherent polariton states, for which there is no theoretical explanation. Applying these transient methods to a series of strong-coupled organic microcavities, we recover similar long-lived spectral effects. Based on transfer-matrix modeling of the transient experiment, we find that virtually the entire photoresponse results from photoexcitation effects other than the generation of polariton states. Our results suggest that the complex optical properties of polaritonic systems make them especially prone to misleading optical signatures and that more challenging high-time-resolution measurements on high-quality microcavities are necessary to uniquely distinguish the coherent polariton dynamics.

17.
ChemSusChem ; 14(12): 2486, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34050608

RESUMEN

Invited for this month's cover is the group of David Lidzey at the University of Sheffield. The image shows a futuristic view of large-scale perovskite solar cell (PSC) manufacture. This includes a high-volume roll-to-roll printing facility and cold-storage of PSC precursor solutions in large industrial fridges. The Full Paper itself is available at 10.1002/cssc.202100332.

18.
ChemSusChem ; 14(12): 2537-2546, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-33872471

RESUMEN

The development of stable perovskite precursor solutions is critical if solution-processable perovskite solar cells (PSCs) are to be practically manufacturable. Ideally, such precursors should combine high solution stability without using chemical additives that might compromise PSC performance. Here, it was shown that the shelf-life of high-performing perovskite precursors could be greatly improved by storing solutions at low-temperature without the need to alter chemical composition. Devices fabricated from solutions stored for 31 days at 4 °C achieved a champion power conversion efficiency (PCE) of 18.6 % (97 % of original PCE). The choice of precursor solvent also impacted solution shelf-life, with DMSO-based solutions having enhanced solution stability compared to those including DMF. The compositions of aged precursors were explored using NMR spectroscopy, and films made from these solutions were analysed using X-ray diffraction. It was concluded that the improvement in precursor solution stability is directly linked to the suppression of an addition-elimination reaction and the preservation of higher amounts of methylammonium within solution.

19.
J Chem Phys ; 154(12): 124309, 2021 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-33810682

RESUMEN

We have fabricated organic semiconductor microcavities having an extended optical path-length (up to 2 µm) that contain J-aggregates of a cyanine dye. These structures are studied using optical-reflectivity and are found to be characterized by a series of polaritonic modes. By changing the effective oscillator strength of the dye within the cavity, we evidence a transition from "normal" strong coupling in which the photon modes are coupled to one another via the excitonic transition of the molecular dye to a state in which photon-modes become decoupled. We use an eight-level modified Hamiltonian to describe the optical properties of the system and compare the distribution of the confined optical field in coupled and decoupled structures.

20.
Angew Chem Int Ed Engl ; 60(30): 16661-16667, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-33908681

RESUMEN

Non-radiative energy transfer between spatially-separated molecules in a microcavity can occur when an excitonic state on both molecules are strongly-coupled to the same optical mode, forming so-called "hybrid" polaritons. Such energy transfer has previously been explored when thin-films of different molecules are relatively closely spaced (≈100 nm). In this manuscript, we explore strong-coupled microcavities in which thin-films of two J-aggregated molecular dyes were separated by a spacer layer having a thickness of up to 2 µm. Here, strong light-matter coupling and hybridisation between the excitonic transition is identified using white-light reflectivity and photoluminescence emission. We use steady-state spectroscopy to demonstrate polariton-mediated energy transfer between such coupled states over "mesoscopic distances", with this process being enhanced compared to non-cavity control structures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...