Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurosci ; 44(17)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38443186

RESUMEN

Dravet syndrome (DS) is a neurodevelopmental disorder characterized by epilepsy, developmental delay/intellectual disability, and features of autism spectrum disorder, caused by heterozygous loss-of-function variants in SCN1A encoding the voltage-gated sodium channel α subunit Nav1.1. The dominant model of DS pathogenesis is the "interneuron hypothesis," whereby GABAergic interneurons (INs) express and preferentially rely on Nav1.1-containing sodium channels for action potential (AP) generation. This has been shown for three of the major subclasses of cerebral cortex GABAergic INs: those expressing parvalbumin (PV), somatostatin, and vasoactive intestinal peptide. Here, we define the function of a fourth major subclass of INs expressing neuron-derived neurotrophic factor (Ndnf) in male and female DS (Scn1a+/-) mice. Patch-clamp electrophysiological recordings of Ndnf-INs in brain slices from Scn1a+/â mice and WT controls reveal normal intrinsic membrane properties, properties of AP generation and repetitive firing, and synaptic transmission across development. Immunohistochemistry shows that Nav1.1 is strongly expressed at the axon initial segment (AIS) of PV-expressing INs but is absent at the Ndnf-IN AIS. In vivo two-photon calcium imaging demonstrates that Ndnf-INs in Scn1a+/â mice are recruited similarly to WT controls during arousal. These results suggest that Ndnf-INs are the only major IN subclass that does not prominently rely on Nav1.1 for AP generation and thus retain their excitability in DS. The discovery of a major IN subclass with preserved function in the Scn1a+/â mouse model adds further complexity to the "interneuron hypothesis" and highlights the importance of considering cell-type heterogeneity when investigating mechanisms underlying neurodevelopmental disorders.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas , Interneuronas , Canal de Sodio Activado por Voltaje NAV1.1 , Animales , Interneuronas/metabolismo , Interneuronas/fisiología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/fisiopatología , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/patología , Ratones , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Femenino , Masculino , Potenciales de Acción/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos
2.
Cell Rep ; 42(6): 112628, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37310860

RESUMEN

Dravet syndrome (DS) is a severe neurodevelopmental disorder caused by loss-of-function variants in SCN1A, which encodes the voltage-gated sodium channel subunit Nav1.1. We recently showed that neocortical vasoactive intestinal peptide interneurons (VIP-INs) express Nav1.1 and are hypoexcitable in DS (Scn1a+/-) mice. Here, we investigate VIP-IN function at the circuit and behavioral level by performing in vivo 2-photon calcium imaging in awake wild-type (WT) and Scn1a+/- mice. VIP-IN and pyramidal neuron activation during behavioral transition from quiet wakefulness to active running is diminished in Scn1a+/- mice, and optogenetic activation of VIP-INs restores pyramidal neuron activity to WT levels during locomotion. VIP-IN selective Scn1a deletion reproduces core autism-spectrum-disorder-related behaviors in addition to cellular- and circuit-level deficits in VIP-IN function, but without epilepsy, sudden death, or avoidance behaviors seen in the global model. Hence, VIP-INs are impaired in vivo, which may underlie non-seizure cognitive and behavioral comorbidities in DS.


Asunto(s)
Trastorno Autístico , Epilepsias Mioclónicas , Ratones , Animales , Canal de Sodio Activado por Voltaje NAV1.1/genética , Ratones Transgénicos , Péptido Intestinal Vasoactivo , Trastorno Autístico/genética , Epilepsias Mioclónicas/genética , Interneuronas/fisiología , Modelos Animales de Enfermedad
3.
Mol Cell Biol ; 40(2)2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31658997

RESUMEN

Immune cell function can be modulated by changes in lipid metabolism. Our studies indicate that cholesterol and fatty acid synthesis increases in macrophages between 12 and 18 h after the activation of Toll-like receptors with proinflammatory stimuli and that the upregulation of lipogenesis may contribute to the resolution of inflammation. The inflammation-dependent increase in lipogenesis requires the induction of the liver X receptors, members of the nuclear receptor superfamily of transcription factors, by type I interferons in response to inflammatory signals. Instead of the well-established role for liver X receptors in stimulating cholesterol efflux, we demonstrate that liver X receptors are necessary for the proper resumption of cholesterol synthesis in response to inflammatory signals. Thus, liver X receptors function as bidirectional regulators of cholesterol homeostasis, driving efflux when cholesterol levels are high and facilitating synthesis in response to inflammatory signals. Liver X receptor activity is also required for the proper shutdown of a subset of type I interferon-stimulated genes as inflammation subsides, placing the receptors in a negative-feedback loop that may contribute to the resolution of the inflammatory response.


Asunto(s)
Colesterol/metabolismo , Inflamación/metabolismo , Lipogénesis , Receptores X del Hígado/metabolismo , Animales , Línea Celular , Células Cultivadas , Células HEK293 , Humanos , Macrófagos/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...