Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 242, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37105953

RESUMEN

This study presents eight new high-quality de novo transcriptomes from six co-occurring species of calanoid copepods, the first published for Neocalanus plumchrus, N. cristatus, Eucalanus bungii and Metridia pacifica and additional ones for N. flemingeri and Calanus marshallae. They are ecologically-important members of sub-arctic North Pacific marine zooplankton communities. 'Omics data for this diverse and numerous taxonomic group are sparse and difficult to obtain. Total RNA from single individuals was used to construct gene libraries that were sequenced on an Illumina Next-Seq platform. Quality filtered reads were assembled with Trinity software and validated using multiple criteria. The study's primary purpose is to provide a resource for gene expression studies. The integrated database can be used for quantitative inter- and intra-species comparisons of gene expression patterns across biological processes. An example of an additional use is provided for discovering novel and evolutionarily-significant proteins within the Calanoida. A workflow was designed to find and characterize unannotated transcripts with homologies across de novo assemblies that have also been shown to be eco-responsive.


Asunto(s)
Copépodos , Transcriptoma , Animales , Humanos , Secuencia de Bases , Copépodos/genética
2.
J Transl Genet Genom ; 5: 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34322662

RESUMEN

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the front runners in technical inventions. Since its induction, scRNA-seq has been well received and undergone many fast-paced technical improvements in cDNA synthesis and amplification, processing and alignment of next generation sequencing reads, differentially expressed gene calling, cell clustering, subpopulation identification, and developmental trajectory prediction. scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types in humans and animal models, healthy or with diseases, including cancer. Accumulative novel subtypes and rare subpopulations have been discovered as potential underlying mechanisms of stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq methods provides an exploratory guide of the quickly evolving technical landscape and insights of focused features and strengths in each prominent area of progress.

3.
Cancers (Basel) ; 12(9)2020 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-32971831

RESUMEN

The interplay between glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) is central to maintain energy homeostasis. It remains to be determined whether there is a mechanism governing metabolic fluxes based on substrate availability in microenvironments. Here we show that menin is a key transcription factor regulating the expression of OXPHOS and glycolytic genes in cancer cells and primary tumors with poor prognosis. A group of menin-associated proteins (MAPs), including KMT2A, MED12, WAPL, and GATA3, is found to restrain menin's full function in this transcription regulation. shRNA knockdowns of menin and MAPs result in reduced ATP production with proportional alterations of cellular energy generated through glycolysis and OXPHOS. When shRNA knockdown cells are exposed to metabolic stress, the dual functionality can clearly be distinguished among these metabolic regulators. A MAP can negatively counteract the regulatory mode of menin for OXPHOS while the same protein positively influences glycolysis. A close-proximity interaction between menin and MAPs allows transcriptional regulation for metabolic adjustment. This coordinate regulation by menin and MAPs is necessary for cells to rapidly adapt to fluctuating microenvironments and to maintain essential metabolic functions.

4.
Cancers (Basel) ; 11(12)2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31805710

RESUMEN

Advanced prostate cancer is a very heterogeneous disease reflecting in diverse regulations of oncogenic signaling pathways. Aberrant spatial dynamics of epidermal growth factor receptor (EGFR) promote their dimerization and clustering, leading to constitutive activation in oncogenesis. The EphB2 and Src signaling pathways are associated with the reorganization of the cytoskeleton leading to malignancy, but their roles in regulating EGFR dynamics and activation are scarcely reported. Using single-particle tracking techniques, we found that highly phosphorylated EGFR in the advanced prostate cancer cell line, PC3, was associated with higher EGFR diffusivity, as compared with LNCaP and less aggressive DU145. The increased EGFR activation and biophysical dynamics were consistent with high proliferation, migration, and invasion. After performing single-cell RNA-seq on prostate cancer cell lines and circulating tumor cells from patients, we identified that upregulated gene expression in the EphB2 and Src pathways are associated with advanced malignancy. After dasatinib treatment or siRNA knockdowns of EphB2 or Src, the PC3 cells exhibited significantly lower EGFR dynamics, cell motility, and invasion. Partial inhibitory effects were also found in DU145 cells. The upregulation of parts of the EphB2 and Src pathways also predicts poor prognosis in the prostate cancer patient cohort of The Cancer Genome Atlas. Our results provide evidence that overexpression of the EphB2 and Src signaling pathways regulate EGFR dynamics and cellular aggressiveness in some advanced prostate cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...